

LC-MS Profiling of Root and Stem Bark of Spathodea campanulata P. Beauv

Author: Vishwatej Parkhi¹

Co Authors: Swati Dabhi², Vinay Shukla³ and Bhupesh Patel⁴

¹⁻⁴Dravyaguna Department, Institute of teaching and research in Ayurveda, Jamnagar, Gujarat, India

ABSTRACT

Plant based medicines are gaining popularity considering their safety and proven efficacy over the synthetic molecules being considerable toxic in profile. Many contemporary drug molecules which are in clinical practice today have herbal origin. Bridging the gap between existing ethnomedicinal knowledge and drug development field is the need of the hour. It can be achieved by effortful screening of potential herbs. Spathodea campanulata P. Beauv. from the family Bignoniaceae has been credited with numerous ethnomedicinal claims ranging from simplest skin disorders, sore throat to complex diseases like malaria, asthma. Contemporary research has also succeeded to identify some of its pharmacological activities like Analgesic and Anti-inflammatory, Antioxidant activity etc. Purpose of present attempt was to carry out screening, identification of bioactive compounds from methanolic extract of Spathodea campanulata P. Beauv. stem and root bark by Liquid chromatography and Mass spectroscopy (LC-MS). Including both the ionisation modes, root and stem bark revealed presence of 127 and 118 diversified compounds. Among them 5(S), 6(R)-Lipoxin A4-d5, Endomorphin-2, 6-Hydroxymethyletoricoxib, Carbenicillin, Levofuraltadone, Homostypolhydroperoxide, Coumeroic acid, 9(11)-Dehydroglycyrrhetic acid, Emedastine, Pranlukast, Muconic dialdehyde, Muconic dialdehyde, Medicagenic acid, Coumarin are major compounds having reported diverse pharmacological activities. Extracted information is useful for future perspective in drug development and understanding of its pharmacological actions

Key Words LC-MS, Spathodea, Phytochemicals, Methanol extract, Bignoniaceae

Received 23rd April 23 Accepted 18th May 23 Published 10th July 2023

INTRODUCTION

Plants are the soul of Ayurvedic system of medicine. Number of other alternative medicine systems like Chinese medicine, Homeopathy and Naturopathy incorporate plants or their derivatives to cure different ailments. Modern medicinal molecules like Digitalins, Artemisinin, Quinine, Reserpine, Atropine, Colchicine and

Emetine are derived from the vegetative sources.

Modern drug molecules make their way to drug development scenario through their traditional folklore and ethnomedicinal potential. Though synthetic products are popular and are in demand due to their cheap production cost, time effectiveness, easy quality control and quick effects but their safety and efficacy were always

the point of concern. This critical scenario brings us back to the natural products. In 21st century, 11% of the 252 drugs considered as basic and essential by the WHO were exclusively of flowering plant origin and 35000-70000 plant species have been screened for their medicinal use. The plant-derived compounds have a long history of clinical use, better patient tolerance and acceptance. The advancement in chemistryallied sciences has helped isolation, identification, standardisation and pinpointing the pharmacological activity of the phytochemicals present in the plants¹.

Liquid chromatography-mass spectrometry (LC–MS) is one such powerful analytical technique used for separation, identification, and quantification of both unknown and known compounds, small molecules as well as to elucidate the structure and chemical properties of different molecules, multicomponent containing substances².

From the family Bignoniaceae, Spathodea campanulata P. Beauv. is the only monotypic genus species reported and seen in majority of floras. Spathodea though originated in Africa, it is very much naturalised in India since long time. Availability of *Spathodea campanulata* P. Beauv. in India is very widespread as it is evident in many floras of Botanical Survey of India. Eighteen floras of like states Gujarat, Maharashtra, Rajasthan etc. report Spathodea campanulata P. Beauv. in natural or cultivatedornamental plant in sub-urban regions³⁻⁵.

Medicinal potential of *Spathodea campanulata* **P. Beauv**^{6,7}.

Spathodea campanulata P. Beauv. reports almost 16 pharmacological activities like analysesic and anti-inflammatory activity, antioxidant activity, anticonvulsant activity, hepatoprotective activity, antimicrobial activity, antimalarial activity etc.

Ethnomedicinal claims of *Spathodea* campanulata P. Beauv-

Stem bark of S. campanulata is used in Africa to treat malaria. The leaves are used in India and Africa to treat skin disorders, epilepsy, liver disorder, asthma, measles and sore throat. The root is used for worm infections, stomach ache, dysentery and hallucination. Flower is used as an antidote against veterinary poison and cataract. Among the traditional uses cited, the most common conditions treated malaria, are gastrointestinal tract (GIT) problem, skin infections, wound healing and kidney diseases. The plant is used alone or in combination with other medicinal plants.

Purpose of the study- Considering all the above exceptional potential of this particular plant, LC-MS analysis was undertaken for its molecular screening to understand the probable rationality of its ethnomedicinal claims and pharmacological properties.

MATERIALS & METHODS

Drug collection & authentication - *Spathodea campanulata* P. Beauv. Stem & root barks were collected from Jamnagar suburban locality (near

Gitamandir), Gujarat. Good collection practices advised by NMPB were followed throughout. Identification of plant specimen was confirmed by referring to various floras of Botanical Survey of India. Plant sample for experiment was authenticated by taxonomist Dr. Jadeja from Maharshi Dayanand Science College, Porbandar. Specimen was deposited at Pharmacognosy laboratory ITRA for future references.

Drug processing- Barks of stem and root were washed with water. They were dried in shade for 10 days. This dried stem and root barks were pulverized in mechanical grinder to prepare coarse powder. The powdered material obtained from stem and root bark was then stored in air tight containers made of polyethylene.

Preparation of extracts- The shade dried coarse powders of stem bark (5 gm) and root bark (5 gm) of *Spathodea campanulata* P. Beauv. were kept in methanol in conical flask (50 ml) for overnight with initial shaking up to 6 hours. After 24 hours, it was filtered and extracts were collected by evaporating them on water bath.

LC-MS setup specifications- Analysis was done at Sophisticated Analytical Instrument Facility (SAIF) IIT, Mumbai using TOF/Q-TOF mass spectrometer. Both methanol and acetonitrile are polar solvents. The rationale for selecting methanol-acetonitrile is higher solubility of most polar chemical compounds and their high miscibility with each other ⁸⁻¹⁰. Absorbance of HPLC-grade acetonitrile is particularly low at short wavelengths. HPLC-grade acetonitrile is suited to high-sensitivity analysis with UV

detection in the short-wavelength region. This acts to prevent background noise and faulty ghost peaks specific to LCMS analysis. This combination also has greater elution strength.

Brief system conditions are as follows-

Ionisation mode- Dual AJS ESI

Stop Time (min)- 30.00

Solvent Composition-

Channel A- 100.0 % Water+ 0.1% FA in Water

Channel B- 100.0 % Methanol+ 90% ACN +10%

H2O+ 0.1% FA, 100.0 % Acetonitrile

Injection Volume- 5.00 μL

Flow rate- 0.300 mL/min

MS Scan Rate (spectra/sec)- 1.00

MS Min Range (m/z)- 120

MS Max Range (m/z)- 1200

High Pressure Limit- 1200.00 bar

Stop time- 35.00 min

Valve switch time- 0.01 min

Data reporting, identification of components and their activity- Software used for processing of mass spectra and chromatograms was Mass Hunter by Agilent technologies. Chemical constituents were identified by the chemical library at the IIT- Bombay. Databases used for characterisation various chemical compounds were HMP, KEGG, LMP, METLIN. The list of active chemical constituents with their molecular formulae, molecular weight, retention time and m/z ratio is prepared manually from the system generated files. Pharmacological activities of each chemical constituent and their classification in discussion section have been referred from PubChem database.

July 10th 2023 Volume 19, Issue 1 **Page 135**

www.ijapc.com

ORIGINAL RESEARCH ARTICLE/ REVIEW ARTICLE/CASE STUDY

RESULTS AND DISCUSSION

LC-MS analysis of Spathodea campanulata P.

Beauv. root bark revealed presence of 78 and 49

number of phytochemicals respectively in positive and negative mode of ionisation as shown in tables 1, 2 and figures 1, 2.

Table 1 List of compounds identified in MeOH extract of <i>Spathodea campanulata</i> P. Beauv. Root bark- Positive mode							
No.	Name	Formula	Mass	RT	m/z		
1.	(22E)-(25R)-25-hydroxy-26-methyl-22,23-	$C_{28} H_{44} O_2$	412.3341	8.233	435.3233		
	didehydrovitamin D3 / (22E)-(25R)-25-hydroxy-	028 1244 02	.12.00 .1	0.200			
	26-methyl-22,23-didehydrocholecalciferol						
2.	(3S,5R,6R,7E)-3,5,6-Trihydroxy-7-megastigmen-	$C_{13} H_{22} O_4$	242.152	4.906	265.1417		
2.	9-one	C ₁₃ 11 ₂₂ O ₄	2-2.132	4.700	203.1417		
3.	(9R,13R)-1a,1b-dihomo-jasmonic acid	$C_{14} H_{22} O_3$	238.1558	10.462	239.163		
3. 4.	(S)-Nerolidol 3-O-[a-L-Rhamnopyranosyl-(1->4)-	C ₁₄ H ₂₂ O ₃ C ₃₃ H ₅₆ O ₁₄	676.3651	12.466	699.3541		
4.	a-L-rhamnopyranosyl-(1->2)-b-D-	C33 II56 O14	070.3031	12.400	099.3341		
<i>E</i>	glucopyranoside]	CILO	444.3575	10.500	167 2167		
5.	11α-ethyl-1α,25-dihydroxyvitamin D3 / 11α-	$C_{29} H_{48} O_3$	444.3373	19.586	467.3467		
	ethyl-1α,25-dihydroxycholecalciferol	C H O	442 2417	10.262	465 221		
6.	$1\alpha,25$ -dihydroxy-26,27-ethanovitamin D3 /	$C_{29} H_{46} O_3$	442.3417	19.263	465.331		
-	1α,25-dihydroxy-26,27-ethanocholecalciferol	G II 0	400.2650	15.550	512.2540		
7.	1α,25-dihydroxy-2β-(3-hydroxypropoxy)vitamin	$C_{30} H_{50} O_5$	490.3658	15.579	513.3548		
	D3 / 1α ,25-dihydroxy- 2β -(3-						
_	hydroxypropoxy)cholecalciferol						
8.	2,6-Dihydroxy-4-methoxytoluene	$C_8 H_{10} O_3$	154.0638	7.523	177.053		
9.	20S-hydroxycholesterol	$C_{27} H_{46} O_2$	402.3506	19.299	425.3391		
10.	22α-Hydroxy-5α-campestan-3-one	$C_{28} H_{48} O_2$	416.3653	18.107	439.3548		
11.	24,24-difluoro-1α,25-dihydroxy-24a-	$C_{28} H_{44} F_2 O_3$	466.3209	19.743	489.3101		
	homovitamin D3 / 24,24-difluoro-1α,25-						
	dihydroxy-24a-homocholecalciferol						
12.	25-acetoxy-ergosta-3beta,5alpha,6beta-triol	$C_{30} H_{52} O_5$	492.3815	17.035	515.3706		
13.	28:5(10Z,13Z,16Z,19Z,22Z)	$C_{28} H_{46} O_2$	414.3498	17.884	437.3392		
14.	2-Butyl-3-phenyl-2-propen-1-al	$C_{13} H_{16} O$	188.1191	6.947	189.1264		
15.	2-Propenal, 3-(1,3-benzodioxol-5-yl)-	$C_{10} H_8 O_3$	176.0462	5.919	177.0531		
16.	2-undecenal	$C_{11} H_{20} O$	168.1523	7.396	191.1416		
17.	2α-methyl-1β,25-dihydroxyvitamin D3 / 2α-	$C_{28} H_{46} O_3$	430.3443	8.195	453.3339		
	methyl-1β,25-dihydroxycholecalciferol						
18.	3S-hydroxypalmitic acid	$C_{16} H_{32} O_3$	272.2359	14.286	295.2249		
19.	4R-hydroxy-octanoic acid	$C_8 H_{16} O_3$	160.1109	10.498	183.1002		
20.	5-(2-Methylpropyl)tetrahydro-2-oxo-3-	$C_9 H_{14} O_4$	186.0901	5.282	209.0791		
	furancarboxylic acid	,					
21.	5,6-Dimethoxyflavone	$C_{17} H_{14} O_4$	282.0879	9.037	283.095		
22.	5-Amino-6-(4-hydroxy-2-butenoyl)-2,2-dimethyl-	C ₁₅ H ₁₇ N O ₄	275.1164	6.091	298.1055		
	4-chromanone	013 1117 11 04	2,0,110	0.071	2,0.1000		
23.	5beta-cholestan-3-one	C ₂₇ H ₄₆ O	386.3554	19.554	409.344		
24.	5-Methyl-2(3H)-furanone	$C_5 H_6 O_2$	98.0381	6.539	121.0274		
25.	5-Nonyltetrahydro-2-oxo-3-furancarboxylic acid	$C_{14} H_{24} O_4$	256.1683	14.778	279.1575		
26.	5-O-(Indol-3-ylacetyl-myo-inositol) D-	$C_{22} H_{29} N O_{12}$	499.1667	6.585	500.1736		
20.	galactoside	C22 1129 11 O12	177.1007	0.505	300.1730		
27.	6alpha-hydroxycholestanol	$C_{27} H_{48} O_2$	404.3651	19.551	427.3541		
28.	7-methyl-decanoic acid	$C_{11} H_{22} O_2$	186.163	11.18	209.1522		
26. 29.	8E-Tetradecenyl acetate	C ₁₆ H ₃₀ O ₂	254.2254	14.26	277.2146		
30.	8β-Hydroxycarapin, 3,8-hemiacetal		484.2181	6.396	485.2252		
30.	9-hydroxy-hexadecan-1,16-dioic acid	$C_{27} H_{32} O_8$ $C_{16} H_{30} O_5$	302.2097	13.076	325.1989		
31.	a-Asarone		208.1089	9.461	209.1162		
32. 33.	Araliacerebroside	$C_{12} H_{16} O_3$ $C_{40} H_{77} N O_{10}$	731.5519	20.282	732.5595		
33. 34.	Candimine		345.1215		368.11		
34. 35.		C ₁₈ H ₁₉ N O ₆		8.279			
35. 36.	Carminomycin	C ₂₆ H ₂₇ N O ₁₀	513.1599 208.1452	6.829 10.758	536.1499 209.1524		
	Carvyl propionate	$C_{13} H_{20} O_2$					
37.	Coumeroic acid	$C_{17}H_{14}N_2O_7$	358.08	6.901	381.0711 570.5061		
38.	DG(16:1(9Z)/0:0/16:1(9Z)) (d5)	C ₃₅ H ₅₉ D ₅ O ₅	569.4988	20.32	570.5061		

July 10th 2023 Volume 19, Issue 1 **Page 136**

39.	Dihydrocaffeic acid 3-O-glucuronide	$C_{15} H_{18} O_{10}$	358.0873	1.915	381.0768
40.	Dihydrodeoxystreptomycin	$C_{21} H_{41} N_7 O_{11}$	567.287	9.79	568.294
41.	Dimethicone	$C_6 H_{18} O Si_2$	162.0902	6.358	185.0793
42.	Diphenylcarbazide	$C_{13} H_{14} N_4 O$	242.1164	6.19	265.1054
43.	EHNA	$C_{14} H_{23} N_5 O$	277.1894	4.527	300.1785
44.	Ethyl 3-hydroxybutyrate	$C_6 H_{12} O_3$	132.0799	4.991	155.0691
45.	Flavidulol C	$C_{34} H_{42} O_4$	514.3119	13.472	537.3011
46.	Flowerone	$C_{20} H_{20} O_6$	356.1248	8.748	357.132
47.	Gibberellin A 66	$C_{20}H_{26}O_7$	378.1681	8.401	401.158
48.	Gibberellin A76	$C_{19} H_{24} O_7$	364.153	8.623	387.1421
49.	Gingerglycolipid C	$C_{33} H_{60} O_{14}$	680.3955	14.069	703.3851
50.	Glucosyl (2E,6E,10x)-10,11-dihydroxy-2,6-farnesadienoate	C ₂₁ H ₃₆ O ₉	432.2344	10.007	455.2236
51.	Gly Lys Gln	$C_{13} H_{25} N_5 O_5$	331.1852	4.736	354.1744
52.	GW1843	$C_{27} H_{24} N_4 O_6$	500.1691	8.876	523.1584
53.	Homotrypanothione	$C_{28} H_{51} N_9 O_{10}$	737.3106	6.125	760.2992
	• •	S_2			
54.	Hydroxyhydroquinone	$C_6 H_6 O_3$	126.0329	14.739	149.0221
55.	Isohydrosorbic acid	$C_6 H_{10} O_2$	114.0688	4.298	137.0581
56.	Isorhamnetin 3-[2"-(4"'-acetylrhamnosyl)-	$C_{36} H_{44} O_{22}$	828.2478	6.691	851.2369
	gentiobioside]				
57.	Istamycin B1	$C_{18} H_{35} N_5 O_6$	417.2574	7.967	440.2464
58.	JWH 018 N-(5-hydroxypentyl) metabolite-d5	$C_{24} H_{18} D_5 N O_2$	362.2048	15.114	363.2122
59.	Leu Tyr Tyr	$C_{24} H_{31} N_3 O_6$	457.2154	5.033	480.2046
60.	Linocinnamarin	$C_{16} H_{20} O_8$	340.1165	5.061	363.1052
61.	Lyngbic acid	$C_{15} H_{28} O_3$	256.205	14.465	279.1941
62.	Macrophylline	$C_{13} H_{21} N O_3$	239.1505	4.58	240.1577
63.	Mycinamicin VII	$C_{29} H_{47} N O_7$	521.3455	16.237	522.3528
64.	O-Acetylcyclocalopin A	$C_{17} H_{22} O_7$	338.1365	6.295	361.126
65.	Octadecyl fumarate	$C_{22} H_{40} O_4$	368.2931	19.501	391.282
66.	PA(O-20:0/0:0)	$C_{23} H_{49} O_6 P$	452.3268	11.407	453.3342
67.	Palmitic amide	$C_{16} H_{33} N O$	255.2543	16.999	256.2616
68.	PE(17:0/20:2(11Z,14Z))	$C_{42} H_{80} N O_8 P$	757.5589	18.411	758.5664
69.	PE(19:0/0:0)	C ₂₄ H ₅₀ N O ₇ P	495.3323	13.756	518.3213
70.	Pirbuterol	$C_{12} H_{20} N_2 O_3$	240.1452	1.793	241.1525
71.	Propanoic acid, 2-(1-ethoxyethoxy)	$C_7 H_{14} O_4$	162.0899	5.279	185.0791
72.	Senampeline A	$C_{25} H_{31} N O_8$	473.2104	5.316	496.1994
73.	Ser-Met-OH	$C_{14} H_{18} N_2 O_7 S$	358.0869	1.151	381.076
74.	Sulprostone	$C_{23} H_{31} N O_7 S$	465.1819	4.863	466.1889
75.	Thr Asn Lys	$C_{14} H_{27} N_5 O_6$	361.1954	4.192	384.1845
76.	trans,trans-hepta-2,4,6-trienoic acid	$C_7 H_8 O_2$	124.0536	7.377	147.0426
77.	trans-O-Methylgrandmarin	$C_{16} H_{18} O_6$	306.1113	7.43	329.1001
78.	Vicenistatin	$C_{30} H_{48} N_2 O_4$	500.3688	18.356	523.3578
	No. 1 1 DE Division /				

Mass- molecular mass, RT- Retention time, m/z- mass per charge ions

Figure 1 Positive mode LCMS chromatogram of *Spathodea campanulata* P. Beauv. root bark

Figure 2 Negative mode LCMS chromatogram of *Spathodea campanulata* P. Beauv. root bark

www.ijapc.com

ORIGINAL RESEARCH ARTICLE/ REVIEW ARTICLE/CASE STUDY

Table 2 List of compounds identified in MeOH extract of Spathodea campanulata P. Beauv. Root bark- Negative mode

	compounds identified in MeOH extract of Spathodea camp				
No.	Name	Formula	Mass	RT	m/z
1.	$(22S)$ - 1α , 22 , 25 -trihydroxy- 26 , 27 -dimethyl-	$C_{32} H_{50} O_4$	498.3735	18.526	497.3667
	23,23,24,24-tetradehydro-24a,24b,24c-				
	trihomovitamin D3 / (22S)-1α,22,25-trihydroxy-				
	26,27-dimethyl-23,23,24,24-tetradehydro-				
	24a,24b,24c-trihomocholecalciferol				
2.	(3beta,22R,23R,24S)-3,22,23-Trihydroxystigmastan-	$C_{29} H_{50} O_4$	462.3726	19.62	461.3653
	6-one	-2)30 -4			
3.	(9R,13R)-1a,1b-dihomo-jasmonic acid	$C_{14} H_{22} O_3$	238.1582	10.678	237.1509
4.	17-Octadecynoic Acid	$C_{18} H_{32} O_3$	280.2411	15.255	279.2339
5.	3-hydroxy-2-methyl-3-phytyl-2,3-dihydro-1,4-	C ₁₈ H ₃₂ O ₂ C ₃₁ H ₄₈ O ₃	466.3502	16.023	511.3448
5.	naphthoquinone	C31 1148 O3	400.3302	10.023	311.3440
6.	3-Hydroxybenzaldehyde	$C_7 H_6 O_2$	122.0368	4.102	167.0349
7.				18.314	
7.	3'-N-Acetyl-4'-O-(14-	$C_{33} H_{52} N_2 O_6$	572.3898	18.314	631.4033
0	methylpentadecanoyl)fusarochromanone	G II 0	250 1025	c 20 c	240.0051
8.	4-Feruloyl-1,5-quinolactone	$C_{17} H_{18} O_8$	350.1025	6.206	349.0951
9.	6-Hydroxymethyletoricoxib	$C_{18} H_{15} Cl N_2 O_3$	374.0545	1.795	433.0689
		S			
10.	7-Dehydrologanin tetraacetate	$C_{25} H_{32} O_{14}$	556.1824	6.771	555.1753
11.	8-Oxocoformycin	$C_{11} H_{14} N_4 O_5$	282.0962	3.192	341.1099
12.	9(11)-Dehydroglycyrrhetic acid	$C_{30} H_{46} O_3$	454.3476	17.477	453.3403
13.	9,10-EOT	$C_{18} H_{28} O_3$	292.2048	13.083	291.1977
14.	Barbatoflavan	$C_{24} H_{28} O_{13}$	524.1574	6.665	523.1503
15.	Brompheniramine	C ₁₆ H ₁₉ Br N ₂	318.0739	1.518	377.0879
16.	Caffeoquinone	C ₉ H ₆ O ₄	178.027	5.458	177.0197
17.	Camelliagenin B	$C_{30}H_{48}O_5$	488.3519	12.534	487.3448
18.	cis-Piceid	$C_{20} H_{22} O_8$	390.1348	9.507	389.1276
19.	Cornuside I	$C_{24} H_{30} O_{14}$	542.1662	5.036	541.1591
20.	Dehydrogriseofulvin	C ₁₇ H ₁₅ Cl O ₆	350.0587	9.884	349.0516
21.	Dimethyl phthalate	$C_{10} H_{10} O_4$	194.0586	6.271	193.0512
22.	Ganoderic acid X	C ₁₀ H ₁₀ O ₄ C ₃₂ H ₄₈ O ₅	512.3523	15.857	511.345
23.	Halistanol sulfate	$C_{29} H_{52} O_{12} S_3$	688.2588	9.162	389.1276
24.	Hexazinone		252.1563	16.748	297.1548
		$C_{12} H_{20} N_4 O_2$			
25.	His-Phe4Cl-OH	C ₂₁ H ₁₉ Cl N ₄ O ₆	458.101	6.633	517.1145
26.	Homostypolhydroperoxide	$C_{27} H_{40} O_4$	428.2866	17.657	473.2853
27.	Kelampayoside A	$C_{20} H_{30} O_{13}$	478.1707	5.279	523.1691
28.	m-Coumaric acid	C ₉ H ₈ O ₃	164.0477	6.146	163.0403
29.	m-Hydroxyphenylpyruvic acid	C ₉ H ₈ O ₄	180.0429	5.833	179.0356
30.	Muconic dialdehyde	$C_6H_6O_2$	110.037	4.315	109.0297
31.	N-Undecylbenzenesulfonic acid	$C_{17} H_{28} O_3 S$	312.177	20.01	311.1697
32.	Oleanolic acid	$C_{30} H_{48} O_3$	456.3624	17.062	455.3553
33.	Patientoside A	C_{19} H_{21} Cl O_8	412.0964	8.881	411.0892
34.	PI-103	$C_{19} H_{16} N_4 O_3$	348.1238	7.038	393.1219
35.	Prunus inhibitor b	$C_{30}H_{24}O_{11}$	560.1313	6.77	559.1262
36.	Quercetin 3,5,3'-trimethyl ether	$C_{18} H_{16} O_7$	344.0927	8.282	343.0854
37.	Sebiferenic acid	$C_{30} H_{48} O_4$	472.3567	14.577	471.3498
38.	S-Formylmycothiol	$C_{18} \ H_{30} \ N_2 \ O_{13} \ S$	514.1479	5.233	513.1414
39.	Syringic acid	$C_9 H_{10} O_5$	198.0528	4.397	197.0455
40.	TGX-221	$C_{21} H_{24} N_4 O_2$	364.192	9.938	363.1846
41.	Vanillic acid	C ₈ H ₈ O ₄	168.0421	4.102	167.0348
42.	Compound 1	$C_7 H_6 O_2$	122.0368	4.102	167.0349
43.	Compound 2	$C_9 H_6 O_4$	178.0269	5.48	177.0197
44.	Compound 6	C ₁₈ H ₃₀ O ₃	294.2206	14.624	293.2133
44. 45.	Compound 11	$C_{18} H_{30} O_3$ $C_9 H_{10} O_5$	198.0528	4.397	197.0455
46.	Compound 16	$C_{16} H_{18} O_9$	354.0941	4.632	353.0872
47.	Compound 17	$C_9 H_6 O_2$	146.0365	5.167	145.03
48.	Compound 17	$C_7 H_8 O$	108.058	6.359	167.0716
49.	Compound 19	$C_7 H_6 O_4$	154.0265	4.315	153.0192

Mass- molecular mass, RT- Retention time, m/z- mass per charge ions

While that of stem bark showed 73 and 45 chemical constituents in dual mode respectively as depicted in tables 3, 4 and figures 3, 4. PubChem is free database of freely accessible chemical information. On PubChem, chemical molecules can be searched for their name, molecular formula, structure, chemical and

physical properties, biological activities, safety and toxicity information, patents, literature citations etc. In all 8 compounds found to be unknown for available database of IIT, Mumbai. Molecule found as 5(S), 6(R)-Lipoxin A4-d5 is non-steroidal anti-inflammatory agent while Endomorphin-2 is from opioid analgesics class.

No.	Name	Formula	Mass	RT	m/z
1.	(10S)-Juvenile hormone III acid diol	C ₁₅ H ₂₆ O ₄	270.1837	14.567	293.1729
2.	(7R)-7-(5-Carboxy-5-	$C_{16} H_{18} N_2 O_9 S$	414.067	1.95	437.057
	oxopentanoyl)aminocephalosporinate				
3.	14,14,14-Trifluoro-11E-tetradecenyl acetate	$C_{16} H_{27} F_3 O_2$	308.1968	14.705	331.1863
4.	14,15-LTE4	C ₂₃ H ₃₇ N O ₅ S	439.2395	7.956	440.2467
5.	17-phenoxy trinor PGF2α ethyl amide	$C_{25} H_{37} N O_5$	431.2696	5.814	432.2768
6.	$1\alpha,25$ -Dihydroxy- 2α -(3-hydroxypropyl)vitamin	$C_{30} H_{50} O_4$	474.371	17.781	497.3602
	D3	50 50 1			
7.	$1\alpha,25$ -dihydroxy- 2β -(3-	$C_{30} H_{50} O_5$	490.3654	15.663	513.354
	hydroxypropoxy)vitamin D3 / 1α,25-dihydroxy-	50 50 5			
	2β-(3-hydroxypropoxy)cholecalciferol				
8.	2,4,12-Octadecatrienoic acid isobutylamide	$C_{22} H_{39} N O$	333.3012	18.043	334.3085
9.	2',5'-Dihydroxy-4-methoxychalcone	$C_{16} H_{14} O_4$	270.0899	6.028	293.0791
10.	2,6-Dihydroxy-4-methoxytoluene	$C_8 H_{10} O_3$	154.0638	5.997	177.053
11.	22α-Hydroxy-5α-campestan-3-one	C ₂₈ H ₄₈ O ₂	416.366	18.328	439.3547
12.	24,24-difluoro-1α,25-dihydroxy-24a-	$C_{28} H_{44} F_2 O_3$	466.3211	19.722	489.31
	homovitamin D3 / 24,24-difluoro-1α,25-	- 20 ++ 2 - 3			
	dihydroxy-24a-homocholecalciferol				
13.	24:3(5Z,9Z,17Z)(11Me,15Me,19Me,23Me)	$C_{28} H_{50} O_2$	418.3811	17.507	441.3707
14.	25-acetoxy-ergosta-3beta,5alpha,6beta-triol	$C_{30} H_{52} O_5$	492.3809	17.068	515.3701
15.	28:5(10Z,13Z,16Z,19Z,22Z)	$C_{28} H_{46} O_2$	414.3489	15.818	437.3382
16.	2-amino-14,16-dimethyloctadecan-3-ol	C ₂₀ H ₄₃ N O	313.3339	19.07	336.3231
17.	2R-hydroxylauric acid	$C_{12} H_{24} O_3$	216.1733	10.48	239.1625
18.	3(4->5)-Abeo-4,11:4,12-diepoxy-3-eudesmanol	$C_{15} H_{24} O_3$	252.1734	13.076	275.1623
19.	3-Methyladipic acid	$C_7 H_{12} O_4$	160.0739	1.823	183.0631
20.	4'-Apo-beta,psi-caroten-4'-al	C ₃₅ H ₄₆ O	482.3578	18.4	483.3656
21.	4R-hydroxy-octanoic acid	$C_8 H_{16} O_3$	160.1108	10.418	183.1001
22.	5(S),6(R)-Lipoxin A4-d5	$C_{20} H_{27} D_5 O_5$	357.2495	15.336	358.2569
23.	5-Methyl-2(3H)-furanone	$C_5 H_6 O_2$	98.0383	6.579	121.0274
24.	5-Nonyltetrahydro-2-oxo-3-furancarboxylic	$C_{14} H_{24} O_4$	256.1681	14.76	279.1574
	acid				
25.	5-O-(Indol-3-ylacetyl-myo-inositol) D-	$C_{22} H_{29} N O_{12}$	499.1657	6.544	500.173
	galactoside				
26.	7-Decynoic acid, 5-oxo-	$C_{10} H_{14} O_3$	182.0951	14.8	205.0841
27.	7-methyl-decanoic acid	$C_{11} H_{22} O_2$	186.1629	11.19	209.1521
28.	Araliacerebroside	$C_{40}H_{77}NO_{10}$	731.5522	20.229	732.559
29.	C10:1n-7	$C_{10} H_{18} O_2$	170.1314	15.283	193.1211
30.	C11:1n-3	$C_{11} H_{20} O_2$	184.1466	5.633	207.1361
31.	Candimine	C ₁₈ H ₁₉ N O ₆	345.1214	8.356	368.1105
32.	Carbenicillin	$C_{17} H_{18} N_2 O_6 S$	378.0926	1.239	401.0802
33.	Cathasterone	$C_{28} H_{48} O_3$	432.3604	15.894	455.35
34.	Citrusin D	$C_{16} H_{22} O_8$	342.1307	4.394	365.1199
35.	Convolvulinolic acid	$C_{15} H_{30} O_3$	258.22	14.578	281.2091
36.	Coumarin	$C_9 H_6 O_2$	146.0355	7.341	147.0427

38. Dihydrodeoxystreptomycin C ₂₁ H ₄₁ N ₇ O ₁₁ S67.2861 Pipiperamide A C ₃₄ H ₃₈ N ₂ O ₆ S70.2699 C ₃₄ H ₃₈ N ₂ O ₆ S70.2699 C ₃₄ H ₃₈ N ₂ O ₆ S70.2699 C ₃₄ H ₃₈ N ₂ O ₆ S70.2699 C ₃₄ H ₃₈ N ₂ O ₆ S70.2699 C ₃₄ H ₃₈ N ₂ O ₆ S70.2699 C ₃₄ H ₃₈ N ₂ O ₆ S70.2699 C ₃₄ H ₃₈ N ₂ O ₆ S70.2699 C ₃₄ H ₃₈ N ₂ O ₆ S70.2699 C ₃₄ H ₃₆ N ₄ O S70.2699 C ₃₄ H ₃₆ N ₄ O S70.2699 C ₃₄ H ₃₆ O S70.2699 C ₃₄ H ₃₆ O S71.2737 C ₃₅ H ₄₄ O S71.2737 C ₃₆ H ₄₄ O S71.2737 C ₃₆ H ₄₄ O S71.2737 C ₃₇ H ₄₆ O S71.2737 C ₃₈ H ₄₇ O S71.2737 C ₃₈ H ₄₇ O S71.2737 C ₃₈ H ₄₇ O S71.2737 C ₄₈ C S71.2737 C S71.2737 C S71.2737 C S71.2737 C S72.		•	•			
39. Dipiperamide A C ₃₄ H ₃₈ N ₂ O ₆ 570.2699 13.028 571.2769 40. Docosanamide C ₂₇ H ₄₅ N O 339.3505 19.193 362.3399 41. Emedastine C ₁₇ H ₂₅ N ₄ O 302.2099 13.115 325.199 42. Endomorphin-2 C ₃₄ H ₃₇ N ₅ O ₅ 571.2737 14.067 572.2804 43. Euphornin C ₃₄ H ₄₄ O ₉ 584.2992 18.745 607.2884 44. Gingerglycolipid C C ₃₅ H ₃₇ N ₆ O ₈ 673.5487 20.837 696.5376 45. GlcCer(d18:0/14:0) C ₃₈ H ₂₅ N O ₈ 673.5487 20.837 696.5376 46. Homotrypanothione C ₂₈ H ₃₁ N ₉ O ₁₀ 737.3089 6.131 760.2972 47. Hydralazine C ₈ H ₈ N ₄ 160.0747 6.677 183.0638 48. Hydroxyhydroquinone C ₈ H ₈ N ₄ 160.0747 6.677 183.0638 48. Hydroxyhydroquinone C ₈ H ₈ N ₄ 160.0747 6.677 183.0638 50. Isochamanetin C ₂₂ H ₁₈ O ₅ 0. Isochamanetin C ₂₂ H ₁₈ O ₅ 0. Isochydrosorbic acid C ₂₂ H ₁₈ O ₅ 0. Isochydrosorbic acid C ₂₄ H ₁₈ D ₅ 0. Isochydrosorbic acid C ₂₅ H ₁₈ O ₅ 0. Isochamanetin C ₂₆ H ₁₀ O ₂ 114.0687 13.211 13.2211 13.2211 13.2211 13.2211 13.2211 13.2211 13.2211 13.2211 13.2211 13.2211		Coumeroic acid	$C_{17} H_{14} N_2 O_7$	358.08		381.0707
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$C_{21} H_{41} N_7 O_{11}$			
41. Emedastine C ₁₇ H ₂₆ N ₄ O 302.2099 13.115 325.199 42. Endomorphin-2 43. Euphornin C ₃₈ H ₄₇ N ₅ O ₅ 571.2737 14.067 572.2804 43. Euphornin C ₃₈ H ₄₀ O ₉ 584.299 18.745 607.2884 44. Gingerglycolipid C C ₃₃ H ₆₀ O ₁₄ 680.3952 14.06 703.3841 45. GlcCer(d18:0/14:0) C ₃₈ H ₇₈ N O ₈ 673.5487 20.837 696.5376 46. Homotrypanothione C ₂₈ H ₅₁ N ₉ O ₁₀ 737.3089 61.31 760.2972 52 47. Hydralazine C ₈ H ₈ N ₄ 160.0747 6.677 183.0638 48. Hydroxyhydroquinone C ₆ H ₆ O ₃ 126.0329 14.752 149.0221 49. Idebenone Metabolite (QS-4) C ₁₃ H ₁₆ O ₆ 268.0938 4.651 291.0835 50. Isochamanetin C ₂₂ H ₁₈ O ₅ 362.1169 2.545 385.1059 51. Isohydrosorbic acid C ₆ H ₁₀ O ₂ 114.0687 4.827 137.0579 52. JWH O18 N-(5-hydroxypentyl) metabolite-d5 53. Leu Tyr Tyr C ₂₄ H ₁₈ D ₅ N O ₂ 362.2043 15.291 363.2116 53. Leu Tyr Tyr C ₂₄ H ₁₈ N ₅ O ₈ 340.1162 5.685 363.1046 56. Met Met C ₁₀ H ₂₀ N ₅ O ₈ 340.1162 5.685 363.1046 57. Mycinamicin VII C ₂₉ H ₄₇ N O ₇ 521.3455 16.308 522.3526 58. Naphthofluorescein C ₂₉ H ₁₆ O ₅ 432.0991 2.048 433.1064 59. N-linoleoyl taurine C ₁₀ H ₂₀ N ₄ O ₈ S 522.3514 18.435 523.3584 63. Otonecine C ₁₀ H ₂₀ O ₁ 495.3303 15.945 496.3368 64. Palmidin C C ₂₄ H ₃₀ N O ₇ P 495.3303 15.945 496.3368 66. P-Hydroxymeperidine C ₁₀ H ₂₀ N ₁ O ₈ 545.129 1.193 689.2047 rutinoside 68. Rugulosin C ₃₀ H ₂₂ O ₁₀ 545.1815 4.954 466.1888 70. Ser-Met-OH C ₁₄ H ₁₈ N ₂ O ₇ S 358.0864 1.138 381.0755 71. Sulprostone C ₂₇ H ₂₉ N ₅ O ₈ 487.2247 5.378 510.214		Dipiperamide A	$C_{34} H_{38} N_2 O_6$	570.2699	13.028	571.2769
42. Endomorphin-2 43. Euphornin 43. Euphornin 44. Gingerglycolipid C 45. GlcCer(d18:0/14:0) 46. Homotrypanothione 46. Homotrypanothione 47. Hydralazine 48. Hydroxyhydroquinone 49. Idebenone Metabolite (QS-4) 49. Idebenone Metabolite (QS-4) 49. Idebenone Metabolite (QS-4) 40. Leukotriene F4 40. Leukotriene F4 41. Cay Ha ₁ No ₂ 42. Leukotriene F4 43. Leu Tyr Tyr 45. Linocinnamarin 46. Met Met 47. Mydralazine 48. Hydroxyhydroquinone 49. Idebenone Metabolite (QS-4) 49. Idebenone Metabolite (QS-4) 49. Idebenone Metabolite (QS-4) 50. Isochamanetin 40. Cay Ha ₁ No ₂ 50. Sea. Sea. Sea. Sea. Sea. Sea. Sea. Sea	40.	Docosanamide	$C_{22} H_{45} N O$	339.3505	19.193	362.3399
43. Euphornin C ₃₃ H ₄₄ O ₉ 584.2992 18.745 607.2884 44. Gingerglycolipid C C ₃₈ H ₇₈ N O ₈ 673.5487 20.837 696.5376 46. Homotrypanothione C ₂₈ H ₅₁ N ₉ O ₁₀ 737.3089 6.131 760.2972 S ₂ 47. Hydralazine C ₈ H ₈ N ₄ 160.0747 6.677 183.0638 48. Hydroxyhydroquinone C ₆ H ₆ O ₃ 126.0329 14.752 149.0221 49. Idebenone Metabolite (QS-4) C ₁₃ H ₁₆ O ₆ 268.0938 4.651 291.0835 50. Isochamanetin C ₂₂ H ₁₈ O ₅ 362.1169 2.545 385.1059 51. Isohydrosorbic acid C ₆ H ₁₀ O ₂ 114.0687 4.827 137.0579 52. JWH 018 N-(5-hydroxypentyl) metabolite-d5 C ₂₄ H ₁₈ D ₅ N O ₂ 362.2043 15.291 363.2116 53. Leu Tyr Tyr C ₂₄ H ₁₈ D ₅ N O ₂ 362.2043 15.291 363.2116 54. Leukotriene F4 C ₂₈ H ₄₈ N ₂ O ₈ S S 88.2822 3.881 591.2711 55. Linocinnamarin C ₁₆ H ₂₀ O ₈ 340.1162 5.685 363.1046 56. Met Met C ₁₀ H ₂₀ N ₂ O ₃ S ₂ 280.093 5.269 281.1001 57. Mycinamicin VII C ₂₉ H ₁₇ N O ₇ 51.3455 16.308 522.3526 58. Naphthofluorescein C ₂₈ H ₁₆ O ₅ 432.0991 2.048 433.1064 59. N-linoleoyl taurine C ₂₈ H ₁₆ O ₉ 382.2043 15.91 97.91 61. Octadecyl fumarate C ₂₉ H ₁₉ N O ₈ S 387.244 5.561 388.2509 60. Occidentoside C ₃₆ H ₃₂ O ₁₅ 704.1714 1.139 705.791 61. Octadecyl fumarate C ₂₉ H ₁₉ N O ₈ S 387.244 5.561 388.2509 62. Oleic Acid-biotin C ₃₀ H ₂₂ O ₇ 494.1386 5.333 517.1279 65. PE(19:0/0:0) C ₂₄ H ₁₈ N O ₈ P 495.3303 15.945 496.3368 66. p-Hydroxymeperidine C ₁₀ H ₁₀ N O ₈ P 495.3303 15.945 496.3368 67. Quercetin 5,7,3',4'-tetramethyl ether 3- rutinoside 68. Rugulosin C ₁₆ H ₁₈ N O ₈ 473.2097 5.326 496.1989 70. Ser-Met-OH C ₁₆ H ₁₈ N O ₈ 473.2097 5.326 496.1989 70. Ser-Met-OH C ₁₆ H ₁₈ N O ₈ 473.2097 5.326 496.1989 71. Trp Trp Pro C ₂₇ H ₂₉ N ₈ O ₄ 487.2247 5.378 510.214	41.	Emedastine	$C_{17} H_{26} N_4 O$	302.2099	13.115	325.199
44. Gingerglycolipid C 45. GlcCer(d18:0/14:0) 46. Homotrypanothione C ₂₈ H ₅₁ N ₉ O ₁₀ S ₂ 737.3089 61.31 760.2972 7760.2972 787.3089 6.131 760.2972 787.3089 6.131 760.2972 788. N ₂ O ₁₀ 737.3089 6.131 760.2972 789. S ₂ 47. Hydralazine C ₈ H ₈ N ₄ 160.0747 6.677 183.0638 48. Hydroxyhydroquinone C ₆ H ₆ O ₃ 126.0329 14.752 149.0221 149.0221 149.0235 150. Isochamanetin C ₁₃ H ₁₆ O ₆ 268.0938 4.651 291.0835 150. Isochamanetin C ₂₂ H ₁₈ O ₅ 362.1169 2.545 385.1059 51. Isohydrosorbic acid C ₆ H ₁₀ O ₂ 114.0687 4.827 137.0579 52. JWH 018 N-(5-hydroxypentyl) metabolite-d5 C ₂₄ H ₁₈ D ₅ NO ₂ 362.2043 15.291 363.2116 53. Leu Tyr Tyr 52. JWH 018 N-(5-hydroxypentyl) metabolite-d5 C ₂₄ H ₁₈ N ₃ O ₆ 457.2146 5.071 480.2038 54. Leukotriene F4 C ₁₀ H ₂₀ O ₈ 340.1162 55. Linocinnamarin C ₁₆ H ₂₀ O ₈ 340.1162 55. Linocinnamarin C ₁₆ H ₂₀ O ₈ 340.1162 56. Met Met C ₁₀ H ₂₀ N ₂ O ₃ S ₂ 280.093 5.269 281.1001 57. Mycinamicin VII C ₂₉ H ₄₇ N O ₇ 521.3455 16.308 522.3526 58. Naphthofluorescein C ₂₀ H ₃₇ N O ₄ S 387.244 5.561 388.2509 60. Occidentoside C ₃₆ H ₃₂ O ₁₅ C ₃₆ H ₃₂ O ₁₅ 704.1714 1.139 705.1791 61. Octadecyl fumarate C ₂₀ H ₃₇ N O ₄ S 387.244 5.561 388.2509 64. Palmidin C C ₂₈ H ₃₀ N O ₇ P 494.1386 5.333 517.1279 65. PE(19:00:00) C ₂₈ H ₃₀ N O ₇ P 495.3303 15.945 496.3368 66. p-Hydroxymeperidine C ₁₅ H ₂₁ N O ₃ C ₂₈ H ₃₀ N O ₇ P 495.3303 15.945 496.3368 70. Ser-Met-OH C ₁₄ H ₁₈ N ₂ O ₇ S 358.0864 1.138 381.0755 71. Sulprostone C ₂₈ H ₃₁ N O ₈ 72. H ₁₈ N ₅ O ₄ 73.779 F ₅ O ₆ 73.779 F ₇ Pro C ₂₇ H ₂₉ N ₅ O ₄ 748.2277 5.378 510.214	42.	Endomorphin-2	$C_{32} H_{37} N_5 O_5$	571.2737	14.067	572.2804
45. GlcCer(d18:0/14:0) 46. Homotrypanothione C28 Hs1 N9 O10 737.3089 6.131 760.2972 47. Hydralazine C8 H8 N4 Hydroxyhydroquinone C6 H6 O3 126.0329 14.752 149.0221 49. Idebenone Metabolite (QS-4) Isochamanetin C22 H18 O5 Isochamanetin C24 H18 O5 Isochamanetin C24 H18 D5 N O2 362.1169 2.545 363.2116 53. Leu Tyr Tyr C24 H18 D5 N O2 362.2043 352.216 54. Leukotriene F4 C28 H44 N O8 S 658.2822 3.881 591.2711 55. Linocinnamarin C16 H20 O8 340.1162 568. Met Met C10 H20 N5 O3 S2 280.093 522.3526 58. Naphthofluorescein C28 H46 O3 C29 H47 N O7 521.3455 16.308 522.3526 58. Naphthofluorescein C29 H37 N O4 S 387.244 5.561 388.2509 60. Occidentoside C36 H2 O15 C37 H38 NO3 638.2523 648.2523 659. P-Hydroxymeperidine C30 H22 O7 C31 H38 NO3 C31 H28 O3 C32 H31 NO3 C31 H28 O3 C32 H31 NO3 C32 H31 NO3 C33 H32 O7 542.119 1.493 543.1267 646.119 646.2131 760.2972 847. M97 848.2033 696.5376 696.5376 696.5376 696.5376 697.373.089 6131 760.2972 847. M97 667. 183.0638 687.3.5487 180.00747 6.677 183.0638 696.5376 697.373.089 61.107 61. Octadecyl fumarate C29 H31 N O3 C38 H36 O5 C38	43.	Euphornin	$C_{33} H_{44} O_9$	584.2992	18.745	607.2884
Homotrypanothione C ₂₈ H ₅₁ N ₉ O ₁₀ 737.3089 6.131 760.2972		Gingerglycolipid C	$C_{33} H_{60} O_{14}$	680.3952	14.06	703.3841
S2	45.	GlcCer(d18:0/14:0)	$C_{38} H_{75} N O_8$	673.5487	20.837	696.5376
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	46.	Homotrypanothione	$C_{28}H_{51}N_9O_{10}$	737.3089	6.131	760.2972
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			S_2			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Hydralazine	$C_8 H_8 N_4$	160.0747	6.677	183.0638
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	48.	Hydroxyhydroquinone	$C_6 H_6 O_3$	126.0329	14.752	149.0221
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Idebenone Metabolite (QS-4)	$C_{13} H_{16} O_6$	268.0938	4.651	291.0835
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50.	Isochamanetin		362.1169		385.1059
53. Leu Tyr Tyr C24 H31 N3 O6 457.2146 5.071 480.2038 54. Leukotriene F4 C28 H44 N2 O8 S 568.2822 3.881 591.2711 55. Linocinnamarin C16 H20 O8 340.1162 5.685 363.1046 56. Met Met C10 H20 N2 O3 S2 280.093 5.269 281.1001 57. Mycinamicin VII C29 H47 N O7 521.3455 16.308 522.3526 58. Naphthofluorescein C28 H16 O5 432.0991 2.048 433.1064 59. N-linoleoyl taurine C20 H37 N O4 S 387.244 5.561 388.2509 60. Occidentoside C36 H32 O15 704.1714 1.139 705.1791 61. Octadecyl fumarate C22 H40 O4 368.2931 19.484 391.2821 62. Oleic Acid-biotin C28 H50 N4 O3 S 522.3514 18.435 523.3584 63. Otonecine C9 H15 N O3 185.1055 4.53 208.0949 64. Palmidin C C30 H22 O7		Isohydrosorbic acid	$C_6 H_{10} O_2$	114.0687		137.0579
54. Leukotriene F4 C28 H44 N2 O8 S 568.2822 3.881 591.2711 55. Linocinnamarin C16 H20 O8 340.1162 5.685 363.1046 56. Met Met C10 H20 N2 O3 S2 280.093 5.269 281.1001 57. Mycinamicin VII C29 H47 N O7 521.3455 16.308 522.3526 58. Naphthofluorescein C28 H16 O5 432.0991 2.048 433.1064 59. N-linoleoyl taurine C20 H37 N O4 S 387.244 5.561 388.2509 60. Occidentoside C36 H32 O15 704.1714 1.139 705.1791 61. Octadecyl fumarate C22 H40 O4 368.2931 19.484 391.2821 62. Oleic Acid-biotin C28 H30 N4 O3 S 522.3514 18.435 523.3584 63. Otonecine C9 H15 N O3 185.1055 4.53 208.0949 64. Palmidin C C30 H22 O7 494.1386 5.333 517.1279 65. PE(19:0/0:0) C24 H30 N O7 P 495.3303 15.945 496.3368 66. p-Hydroxymepe		JWH 018 N-(5-hydroxypentyl) metabolite-d5	$C_{24} H_{18} D_5 N O_2$	362.2043		363.2116
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$C_{24} H_{31} N_3 O_6$	457.2146	5.071	480.2038
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Leukotriene F4	$C_{28} H_{44} N_2 O_8 S$	568.2822	3.881	591.2711
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Linocinnamarin	$C_{16} H_{20} O_8$	340.1162	5.685	363.1046
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				280.093		281.1001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$C_{29} H_{47} N O_7$	521.3455	16.308	522.3526
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			$C_{28} H_{16} O_5$			433.1064
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$C_{20} H_{37} N O_4 S$	387.244	5.561	388.2509
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Octadecyl fumarate	$C_{22} H_{40} O_4$	368.2931	19.484	391.2821
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Oleic Acid-biotin	$C_{28} \ H_{50} \ N_4 \ O_3 \ S$	522.3514		523.3584
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$C_9 H_{15} N O_3$			208.0949
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$C_{30} H_{22} O_7$		5.333	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$C_{24} H_{50} N O_7 P$	495.3303		496.3368
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	66.	p-Hydroxymeperidine	$C_{15} H_{21} N O_3$	263.1528	11.641	286.1419
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	67.	Quercetin 5,7,3',4'-tetramethyl ether 3-	$C_{31} H_{38} O_{16}$	666.2153	1.183	689.2047
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		rutinoside				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	68.	Rugulosin	$C_{30} H_{22} O_{10}$	542.119	1.493	543.1267
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Senampeline A	$C_{25} H_{31} N O_8$	473.2097	5.326	496.1989
72. trans-O-Methylgrandmarin C ₁₆ H ₁₈ O ₆ 306.1107 7.886 329.0999 73. Trp Trp Pro C ₂₇ H ₂₉ N ₅ O ₄ 487.2247 5.378 510.214		Ser-Met-OH	$C_{14} \ H_{18} \ N_2 \ O_7 \ S$	358.0864		381.0755
73. Trp Trp Pro C ₂₇ H ₂₉ N ₅ O ₄ 487.2247 5.378 510.214		Sulprostone	$C_{23} H_{31} N O_7 S$	465.1815	4.954	466.1888
		trans-O-Methylgrandmarin	$C_{16} H_{18} O_6$	306.1107	7.886	329.0999
	73.		C ₂₇ H ₂₉ N ₅ O ₄	487.2247	5.378	510.214

Mass- molecular mass, RT- Retention time, m/z- mass per charge ions

Figure 3- Positive mode LCMS chromatogram of *Spathodea campanulata* P. Beauv. stem bark

Figure 4 Negative mode LCMS chromatogram of *Spathodea campanulata* P. Beauv. stem bark

Table 4 List of compounds identified in MeOH extract of *Spathodea campanulata* P. Beauv. Stem barknegative mode

No.	Name	Formula	Mass	RT	m/z
1.	(+)-7-epi-Syringaresinol 4'-glucoside	C ₂₈ H ₃₆ O ₁₃	580.2189	7.06	579.2123
2.	(+)-Plicamine	C ₂₆ H ₂₆ N ₂ O ₆	462.1773	5.182	507.1756
3.	(2S,2"S,3S,3"R,4S)-3,4',5,7-	C ₃₀ H ₂₄ O ₁₀	544.1373	7.327	543.1319
	Tetrahydroxyflavan(2->7,4->8)-				
	3,4',5,7-tetrahydroxyflavan				
4.	10E,12E-Hexadecadienyl acetate	$C_{18} H_{32} O_2$	280.2443	17.279	279.2369
5.	13,14-dihydro-16,16-difluoro	$C_{20} H_{34} F_2 O_5$	392.2391	14.163	451.2527
	Prostaglandin E1				
6.	2E,4E,6Z,8Z-Decatetraenedioic acid	$C_{10} H_{10} O_4$	194.0592	6.569	193.0518
7.	3-Dehydro-L-threonate	$C_4 H_6 O_5$	134.0226	1.203	133.0153
8.	3-Fucosyllactose	$C_{18} H_{32} O_{15}$	488.1777	1.521	533.176
9.	5-[4,5-Dihydroxy-6-(hydroxymethyl)-	$C_{29} H_{34} O_{15}$	622.1945	6.836	621.1871
	3-(3,4,5-trihydroxyoxan-2-				
	yl)oxyoxan-2-yl]oxy-7,8-dimethoxy-				
	3-(4-methoxyphenyl)chromen-4-one	~		10.00	
10.	5Z-octadecenoic acid	C ₁₈ H ₃₄ O ₂	282.2602	18.293	281.2528
11.	6-HODE	C ₁₈ H ₃₂ O ₃	296.2387	13.633	295.2314
12.	6'-O-E-Caffeoyl-mussaenosidic acid	C ₂₅ H ₃₀ O ₁₃	538.1731	7.608	537.1658
13.	9R-HOME(10E)	C ₁₈ H ₃₄ O ₃	298.2551	14.619	297.2478
14.	Antibiotic X 14889D	C ₃₃ H ₅₈ O ₇	566.4167	20.087	611.4164
15.	Barbatoflavan	C ₂₄ H ₂₈ O ₁₃	524.1571	6.655	523.1492
<u>16.</u>	Camelliagenin B	C ₃₀ H ₄₈ O ₅	488.3543	11.573	487.3473
<u>17.</u>	Formimidoyl-fortimicin A	C ₁₈ H ₃₆ N ₆ O ₆	432.2769	8.672	491.2906
18.	Glu Trp Glu	C ₂₁ H ₂₆ N ₄ O ₈	462.177	4.509	461.1702
19.	Glyinflanin H	C ₁₉ H ₁₆ O ₄	308.1081	9.917	307.1008
20.	Hexazinone	C ₁₂ H ₂₀ N ₄ O ₂	252.159	18.556	311.1731
21.	Idebenone Metabolite	$C_{19} H_{30} O_9 S$	434.1608	7.436	433.1533
	(Benzenedecanoic acid, 2-hydroxy-3,4-dimethoxy-6-methyl-5-(sulfooxy)-				
)				
22.	Isoacteoside	C ₂₉ H ₃₆ O ₁₅	624.2099	6.61	623.2029
23.	Isophylloflavanine	C ₃₅ H ₃₂ O ₁₃	660.1862	6.891	659.1791
24.	Istamycin KL1	C ₁₃ H ₂₈ N ₄ O ₆	336.2007	8.726	395.2147
25.	Kelampayoside A	$C_{13} H_{28} H_{4} G_{0}$ $C_{20} H_{30} O_{13}$	478.1708	5.822	537.1855
26.	Lamprolobine	C ₁₅ H ₂₄ N ₂ O ₂	264.1804	17.815	309.1787
27.	Lauryl hydrogen sulfate	C ₁₂ H ₂₆ O ₄ S	266.1592	15.756	265.152
28.	Levofuraltadone	C ₁₃ H ₁₆ N ₄ O ₆	324.1085	1.52	383.1223
29.	Medicagenic acid	C ₃₀ H ₄₆ O ₆	502.3338	12.409	501.327
30.	Momordol	C ₂₆ H ₄₈ O ₅	440.3562	18.619	499.3703
31.	Muconic dialdehyde	C ₆ H ₆ O ₂	110.0377	4.29	109.0304
32.	Norswertianolin	C ₁₉ H ₁₈ O ₁₁	422.0849	1.113	421.0781
33.	octadeca-9Z,11E,15Z-trienoic acid	C ₁₈ H ₃₀ O ₂	278.2285	16.413	277.2212
34.	Phylloflavan	C ₂₆ H ₂₆ O ₁₀	498.1517	4.933	497.1466
35.	Pranlukast	C ₂₇ H ₂₂ N ₅ O ₄	480.1668	5.554	525.165
36.	Proparacaine	C ₁₆ H ₂₆ N ₂ O ₃	294.1908	19.996	293.1839
37.	Pteridine	C ₆ H ₄ N ₄	132.0442	1.108	191.058
38.	Scutellarioside II	C ₂₄ H ₂₈ O ₁₂	508.1622	7.372	507.1549
39.	S-methylcaptopril	C ₁₁ H ₁₈ O ₃ S	230.0976	8.267	275.0955
40.	Sodium Tetradecyl Sulfate	C ₁₄ H ₃₀ O ₄ S	294.1914	18.619	353.2051
41.	SSR 125543	C ₂₇ H ₂₈ Cl F N ₂ O S	482.1596	5.19	527.1578
42.	Thr Pro Arg	C ₁₅ H ₂₈ N ₆ O ₅	372.2125	17.52	431.2261
43.	Trp Glu Glu	C ₂₁ H ₂₆ N ₄ O ₈	462.1772	4.898	507.1754
44.	Trp Ser Gly	C ₁₆ H ₂₀ N ₄ O ₅	348.1449	4.489	347.1374
45.	TyrMe-HoPhe-OH	$C_{26} H_{26} N_2 O_7$	478.1727	5.156	537.1867

Mass- molecular mass, RT- Retention time, m/z- mass per charge ions

Chemical entity 6-Hydroxymethyletoricoxib is human metabolite of Etoricoxib molecule. Carbenicillin is semisynthetic penicillin having substantial in vitro activity against a variety of both gram-positive, gram-negative microorganisms and have antipseudomonal and antiproteal activity. Levofuraltadone is antiinfective. antibacterial agent. Homostypolhydroperoxide is one of the local anti-infective agent. Coumeroic acid is having free radical scavenging, antioxidant and antiinfective activity. Derivative of glycyrrhizic acid is 9(11)-dehydroglycyrrhetic acid. Glycyrrhizic acid was reported to present anti-allergic, antiviral and anti-inflammatory activities as well improvements in gl<u>ucose</u> tolerance. as Brompheniramine and Emedastine are histamine H1 antagonist while Pranlukast is anti-asthmatic agent and Leukotriene antagonist. Muconic dialdehyde, Muconic dialdehyde are antifungal agents while Medicagenic acid have fungistatic haemolytic activity. Coumarin acts as anticoagulant agent while Hydralazine shows antihypertensive activity¹¹.

CONCLUSION

These separated chemical compounds help us to understand possible mechanism behind ethnomedicinal claims and pharmacological activities of plant. Inferred information will be useful for stakeholders in the drug development sector for future research and scientific aspects.

Information can be used as reference guidance for the quality control studies involving this plant species. Future works regarding specific activity of screened compounds may provide more insight about the use of the plant. Generated data surely adds valuable scientific information to the present literature status of *Spathodea campanulata* P. Beauv.

ACKNOWLEDGMENT

Authors are thankful to Dean, Director, Head of Pharmaceutical chemistry Laboratory-ITRA for preliminary research facilities and extract preparation, SAIF-IIT Mumbai for carrying out LC-MS analysis and Dr. Jadeja for providing authentication of the plant specimen.

REFERENCES

- 1. Veeresham, C. (2012). Natural products derived from plants as a source of drugs. Journal of Advanced Pharmaceutical Technology and Research, 3(4), 200-1.
- 2. Mukherjee, P.K. (Ed.). (2019). LC–MS: A Rapid Technique for Understanding the Plant Metabolite Analysis. Quality Control and Evaluation of Herbal Drugs. (459-479). Elsevier. https://doi.org/10.1016/C2016-0-04232-8.
- 3. Useful Tropical Plants Database. <a href="https://tropical.theferns.info/viewtropical.php?id="https://tropical.theferns.info/viewtropical.php?id="https://tropical.theferns.info/viewtropical.php?id="https://tropical.theferns.info/viewtropical.php?id="https://tropical.theferns.info/viewtropical.php?id="https://tropical.theferns.info/viewtropical.php?id="https://tropical.theferns.info/viewtropical.php?id="https://tropical.theferns.info/viewtropical.php?id="https://tropical.theferns.info/viewtropical.php?id="https://tropical.theferns.info/viewtropical.php?id="https://tropical.theferns.info/viewtropical.php?id="https://tropical.theferns.info/viewtropical.php?id="https://tropical.theferns.info/viewtropical.php?id="https://tropical.theferns.info/viewtropical.theferns.info/viewtropical.php?id="https://tropical.theferns.info/viewtropical.theferns.info/

- 4. Saxena, H., Brahmam, M. (1995). The flora of Orissa. Orissa forest development corporation Ltd, 1309.
- 5. Botanical Survey India. https://bsi.gov.in/page/en/state-flora. Accessed on 20/04/2023.
- 6. Padhy, G. K. (2021). Spathodea campanulata P. Beauv.- A review of its ethnomedicinal, phytochemical, and pharmacological profile. Journal of Applied Pharmaceutical Science, 11(12), 017-044.
- 7. Wagh, A.A., Butle, S.R. (2018). Plant profile, phytochemistry and pharmacology of Spathodea campanulata P. Beauvais (african tulip tree): a review. International Journal of Pharmacy and Pharmaceutical Sciences, 10(5), 1-6.
- 8. Abubakar, Abdullahi R., Haque, & Mainul. (2020). Preparation of Medicinal Plants: Basic Extraction and Fractionation Procedures for Experimental Purposes. Journal of Pharmacy and Bioallied Sciences, 12(1), 1-10.

9. The Role of Methanol and Acetonitrile as

Organic Modifiers in Reversed-phase Liquid Chromatography.

On https://www.chromatographytoday.com/article/h
https://www.chromatographytoday.com/article/h
https://www.chromatographytoday.com/article/h
https://www.chromatographytoday.com/article/h
https://www.chromatographytoday.com/article/h
https://www.chromatography-technologies/the-role-of-methanol-and-

acetonitrile-as-organic-modifiers-in-reversed-phase-liquid-chromatography/2507. Accessed on 9/5/2023.

10. Key differences in the use of methanol and acetonitrile.

https://www.shimadzu.com/an/servicesupport/technical-support/lib/methanol<u>acetonitrile.html</u>. Accessed on Accessed on 9/5/2023.

11. <u>National Center for Biotechnology</u> <u>Information US. National Library of Medicine.</u> <u>https://pubchem.ncbi.nlm.nih.gov/</u>. Accessed on 22/04/2023.