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Abstract: Big data refers to the large amount of information that is collected from different areas and shared on the 

internet. However, this development has led to difficulties in using frequent itemset mining applications. To overcome 

the issue of frequent data mining, this research has introduced an empirical sampling algorithm using RadeMacher 

average (ESA-RMA). When considering the size of the initial sample and scheduling the samples, the ESA utilizes 

the RadeMacher average to bound the samples. Initially, the data is obtained from the dataset of the human activity 

recognition (HAR) and real time datasets from smartphone gyroscope and accelerometer, then obtained data is 

pre-processed using the data normalization technique. Then, the ESA is used to select the labelled data and RMA is 

used to bound the samples. This bounding process defines the upper limit of the input data which helps in the effective 

mining of frequent item sets. Thus, the data with redundant items are mined out using the proposed ESA-RMA method. 

The experimental results show that the proposed ESA-RMA has taken a minimum run time of 212 ms for data obtained 

from smartphone accelerometer which is comparatively lower than the existing Scalable Simple Random Sampling 

(ScaSRS) with processing time of 362 ms. Similarly, for HAR dataset, the proposed method took processing time of 

5.43 s whereas the existing vertical frequent time interval–related pattern (VertTIRP) mining approach took processing 

time of 7.82 s.   

Keywords: Big data, Empirical sampling algorithm, Frequent item set mining, Rademacher average, Human activity 

recognition. 

 

 

1. Introduction 

Database systems play an important role in 

storing big data with real-time applications. 

Moreover, the data varies from structured to 

unstructured data obtained from various applications 

such as system transactions, the world wide web, and 

so on [1,2]. Frequent item set mining (FIM) is known 

as one of the significant processes involved in mining 

big data which attracts more researchers to work on 

it. Mining out the frequent item set from the stream 

of data is one of the major issues involved in the 

process of FIM [3]. The process involved in mining 

the frequent item aims to detect the item set where the 

occurrence frequency exceeds the present frequency 

of massive databases like big data. The process 

involved in mining the redundant item offers 

different types of tasks regarding correlation analysis, 

local periodicity and plotting the fragments [4]. The 

detection of frequent item sets involves various types 

of resources which help in mining the frequent items 

and diminishes the burden of the process [5]. Mining 

the frequent dataset requires multiple passes through 

a database which helps in the progress of detecting 

frequent items in static or dynamic databases [6, 7]. 

However, complexities occurred during the 

evaluation of time in mining the data and this can be 

overwhelmed using the sampling technique.  

The sampling technique can select the labelled 

data from the group of unlabelled data [8, 9]. 

Moreover, the techniques based on sampling consider 

the type of data and helps to minimize the response 

time [10]. However, the limitation occurs in the 

sampling technique in form of diminished accuracy 

value. To improve the efficiency and accuracy of 
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frequent item set mining, a progressive sampling 

technique is employed, which leads to faster 

convergence and better results [11, 12]. Additionally, 

the progressive sampling technique determines the 

size of the entire database in a randomized manner 

[13]. The data gets segregated into two phases such 

as labeled data and pseudo-labeled data while mining 

the frequent data. Moreover, progressive sampling 

has the efficiency to figure out the data with reliable 

pseudo labels with their data indices [14, 15]. The 

existing works have problems related to execution 

time and error value while mining frequent data. To 

overcome the aforementioned problems, this research 

introduced a progressive sampling utilizing 

RadeMacher average value to evaluate the value of 

frequent item sets and mine it out.    

The major contributions of this research are 

mentioned as follows: 

1. This research introduced an empirical 

sampling algorithm using RadeMacher 

average to mine the frequent item set. 

Moreover, the empirical sampling algorithm 

is used to select the labeled data and the 

RadeMacher algorithm is used to bound the 

samples. 

2. The effective RadeMacher average is 

computed by relaxing the bounded values of 

the sequential pattern using the empirical 

sampling algorithm.  

The remaining the research paper is organized in 

the following way: Section 2 describes the related 

works based on sampling techniques and the 

proposed method is described in section 3. The 

section 4 describes the results and analysis and finally, 

the overall conclusion of this research is presented in 

section 5.  

2. Related works 

P.P. Jashma Suresh [16] introduced a hybrid 

switching framework to mine the frequent Itemset. 

The hybrid switching framework is the combination 

of NegNodesets combined with the list-based 

structure. The NegNodesets were comprised with 

bitmaps which creates concise pattern of Itemset and 

the list-based structure perform intersection operation 

to create list of frequent Itemset. Moreover, the 

transactional merging concept was used in hybrid 

approach to reduce the runtime by combining several 

transactions in a single Itemset. However, the 

operations performed based on listed operations 

consumes more memory.       

Sacha Servan-Schreiber [17] have introduced 

Progressive Sequence mining with convergence 

guarantees (ProSecCo) algorithm for the progressive 

mining of frequent data from large datasets. The 

introduced method utilized VC-dimensions with 

strong probabilistic guarantees and deliver the 

intermediate results of frequent sequences with high-

quality data. The ProSecCo provides a quality 

collection of sequences in a minimal time when 

compared with the non-progressive algorithms. At 

low-frequency thresholds, the explosion of pattern 

occurs which may affect the overall performance of 

ProSecCo. 

Diego Santoro [18] have introduced a sampling-

based algorithm to mine the frequent items from huge 

databases. The introduced sampling algorithm 

utilized the ideology of VC-dimension which helps in 

approximating the frequent sequential pattern. 

Moreover, the efficiency of the introduced sampling 

algorithm was evaluated for the small-level to large-

level databases. The introduced sampling algorithm 

utilized upper bound maximum deviation to obtain 

better results at the time of mining massive data.  

Kheyreddine Djouzi [19] have introduced an 

effective sampling methodology based on scalable 

simple random sampling (ScaSRS) and subsampled 

double bootstrap (SDB) to select smaller subsets 

during sampling. In the introduced sampling 

technique, the SDB method evaluates the variance 

and ScaSRS could scale up the entire process that 

aids in better accuracy of the introduced method. The 

introduced sampling method verifies the selected 

instance and makes use of minimum instances to 

attain better results. However, when the number of 

instances gets increased the computational time also 

gets increased.  

Mingtao Lei [20] have introduced a transaction 

database graph model to mine out the top- k 

sequential patterns from the big data. Each path in the 

graph was comprised of multi-sequential transactions 

to find the sequential patterns with qualified 

guarantees. Initially, the length of the transaction path 

and was determined to collect the sequence of 

transactions. By using the collected transactional 

sequences, the proper top-k pattern is obtained.  

Moreover, the model utilized an unbiased estimator 

which helps to obtain provable guarantees with 

minimal error rate. However, the huge size of 

transaction data leads to time complexity and space 

cost. 

N Yamuna Devi [21] have introduced a parallel 

direct vertical map reduce (PDVMR) programming 

approach to mine the frequent item from UCI 

machine learning repository dataset. The suggested 

approach is comprised with two stages such as 

mapping and reduction. The mapping was performed 

using the parallel direct vertical method and the 

execution of the suggested approach was based on the 
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number of clusters. However, the scalability of the 

suggested approach was minimized when the number 

of nodes were increased.   

Natalia Mordvanyuk [22] have introduced a 

vertical frequent time interval–related pattern 

(VertTIRP) mining approach to combine and mine 

the effective patterns. VertTIRP utilize temporal 

transitivity properties along with a pairing strategy to 

improve the speed of mining process. Moreover, 

temporal relations were used to remove the 

ambiguities based on epsilon approach. The 

suggested approach implicit on a transitive property 

which minimize the time and enhance the mining 

efficiency. However, VertTIRP approach was 

incapable to mine the closely related patterns. 

The related works discussed in this section have 

the major drawback related to time complexities and 

error rates. By considering this, the proposed research 

introduced an empirical progressive sampling 

technique to overcome the fore-mentioned issues.  

3. Preliminaries 

This research mainly focused on gathering the top 

𝑘  by mining the sample from HAR and real time 

datasets from smartphone gyroscope and 

accelerometer. In the progressive sampling technique, 

𝐼 is considered as the set of items  with arbitrary order 

𝐴𝑜 . The transaction is a subsection of 𝐼 is comprised 

of transactional datasets and the item set is assigned 

as 𝐴 which is contained in the transaction set 𝑇𝑠. The 

frequency of the item set in the dataset 𝐷  is 

represented in Eq. (1), 

 

𝑓𝐷(𝐴) = |𝑇𝐷(𝐴)|/|𝐷|                                  (1) 

 

Where 𝑓𝐷 are the normal frequency value and the 

item sets with maximum frequency are denoted as 

𝑓𝐷
(𝑘)

, the set of 𝑇𝑜𝑝 𝑘 is denoted in Eq. (2) as follows: 

 

𝑇𝑜𝑝 𝑘(𝐷, 𝐼, 𝑘) = 𝐹𝐼(𝐷, 𝐼, 𝑓𝐷
(𝑘)

)                    (2) 

 

Where the maximum frequency of the dataset is 

represented as 𝑓𝐷
(𝑘)

. 

3.1 Progressive sampling using RadeMacher 

averages 

After collecting the top 𝑘  samples from the 

dataset, The RadeMacher average is evaluated to 

minimize the runtime and the computational time. 

The basic process involved in the iterative 

progressive sampling process is represented as 

follows: 

(i) In an iteration 𝑖,  the random samples with 

pre-defined sizes are created based on 

randomized datasets 

(ii) The stopping condition should be verified 

and extracted from the random sample 𝑆𝑖. 
(iii) When the stopping condition gets satisfied, 

the approximates of the collected values are 

returned, otherwise improve 𝑖 and return to 

first step. 

This algorithm is designed to be bounded by 

RadeMacher averages and a criterion to choose the 

initial sample size thus expected to run on for fewer 

iterations when its predecessor methodologies are 

taken into consideration. The specified big data set is 

used to identify range spaces with less value for 

RadeMacher penalty. RadeMacher average is then 

computed for identified range space which happens 

to be the tight bound on the input to each subsequent 

iteration of the progressive sampling algorithm. The 

𝜀   approximation is evaluated in a provided space 

range and the initial size of the sample is evaluated 

using the statistical divergence method. The best 

solution for sampling huge data, which is a non-

polynomial time problem, can be produced by 

employing a progressive sampling technique with 

data bounds like the RadeMacher average. The 

progressive sampling algorithm is predicted to have 

an order polynomial runtime which is presented in Eq. 

(3) as follows: 

 

𝜀 = 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 + 𝑛 ∗ 

𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚  (3) 

 

where the number of iterations is denoted as n 

and ε are known as the approximation value. 

The RadeMacher approach utilized in the 

progressive sampling algorithm performs individual 

scanning for the datasets to detect the sampling. The 

algorithmic approach of the progressive sampling 

algorithm is mentioned as follows: 

Input: HAR data and real time datasets from 

smartphone gyroscope and accelerometer 

Output: Frequent data  

1. Independent distribution of Big data was 

utilized in detecting the range of spaces 

2. Evaluate RadeMacher average for range of 

space values where R ⊆ d  which is 

represented in Eq. (4) as follows: 

 

Arg min{𝑃𝑟{𝑆𝑢𝑝ℎ∈𝐻|𝜀𝑃(ℎ) − 𝜀𝑛(ℎ)| ≥ 𝜀} ≤ 𝛿} (4) 

 

Where 𝑅 is the set of range of any domain 𝑑,the 

size of the sample is denoted as 𝑠, 𝛿 is represented as  
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Figure. 1 The overall process involved in mining the 

frequent pattern from big data 

 

RadeMacher constant and the approximation value is 

represented as 𝜀.    
3. Evaluate the statistic optimal size based on 

divergence and it is represented as Soptimal. 

4. Then, evaluate the sampling schedule which is 

presented in the form of geometric scheduled 

sampling shown in Eq. (5) as follows: 

 

𝑆𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 = {𝑆𝑜𝑝𝑡𝑖𝑚𝑎𝑙,𝑆1 ,𝑆2, … . , 𝑆𝑛}       (5) 

 

Where the sampled scheduling is denoted as 

𝑆𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 . 
5. During the time of the first iteration, the 

optimal scheduling method Soptimal   is 

selected to evaluate and optimize the 

unstructured data. 

These steps from 1 to 5 are evaluated for a new 

set of samples till the sample set achieved its 

progression or when the size of the sample set 

exceeds the bound of RadeMacher average. 

6. The final step is based on training the set of 

samples based on their size for a selected set 

of ranges to obtain the set of frequent samples 

in the HAR and real time datasets from 

smartphone gyroscope and accelerometer. 

3.2 Frequent pattern mining using RadeMacher 

model 

Frequent pattern mining is a significant method to 

figure out the frequently used data/patterns from real-

time databases. Moreover, this research addressed the 

problems related to time complexities and error rates.  

This research introduced a novel approach to mining 

out the redundant data using the proposed 

RadeMacher method for progressive sampling. 

Initially, the data is obtained from a series of real and 

synthetic databases and pre-processing is performed 

to filter out irrelevant information. The pre-processed 

data enters the phase of RadeMacher model which 

performs progressive sampling to mine out the 

frequent information with minimum convergence. 

The overall process involved in mining the frequent 

pattern is represented in Fig. 1 as follows:    

3.3 Data acquisition and pre-processing  

This subsection provides the datasets utilized in 

the proposed frequent pattern mining model and the 

data is obtained from both real and synthetic data. In 

this research, the data is obtained from human 

activity recognition (HAR) dataset [23] and the real 

time data obtained from accelerometer and gyroscope 

[24] is used to evaluate the proposed method. The 

HAR dataset is built from the records obtained from 

30 subjects of daily activities performed by humans. 

Secondly, two real-time datasets from smartphone 

accelerometers and gyroscopes are used to evaluate 

the proposed method. 

▪ Smartphone accelerometer: It contains the 

data obtained from the accelerometer of 

smartphones and the related activities of 

humans. This database is comprised of 

11,762,265 samples.  

▪ Smartphone gyroscope: This dataset is 

comprised of x, y, z  coordinates which are 

captured from the gyroscope of the 

smartphones. It consists of 12,063,000 

components after removing uncategorized 

components. 

The obtained raw data is pre-processed using the 

data normalization technique which converts the 

values present in the dataset into a common scale of 

input features.   

3.4 Progressive sampling  

After computing the values of RadeMacher 

values, progressive sampling is employed in this 

research. Progressive sampling is defined as the 

method to choose the instance to build a training set 

of samples to attain a better convergence rate. At the 

initial stage, the method initiates with minimal 

instances based on the contexts and criteria. The 

value of  Soptimal is the sampling technique to train 

the progressive sampling algorithm. The samples 

with minimum training set will obtain better accuracy 

than Soptimal  so, Risk Minimization technique is 

employed in enhancing the efficiency of Soptimal 

state to achieve better accuracy.  
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3.4.1. Empirical progressive sampling approach 

The proposed technique presented in this research 

evaluates the RadeMacher average for the provided 

dataset and the RadeMacher average computes the 

upper bound size of the input data and confirms the 

presence of the model within the probably 

approximate correct framework (PAC). The 

RadeMacher average is highly capable to assess the 

large range of sample sets which is based on the 

convergence rate. When the probable convergence is 

not obtained, then it offers a tight bound and leads to 

sampling complexity. The size of the statistic optimal 

sample set diminished the useless iterative values and 

provides an effective sampling. The algorithmic 

approach to identify the statistic optimal size is 

provided in below mentioned pseudo code. 

 

Input: The range space 𝑅 ∈ 𝐷 

Output: (𝑆𝑖, 𝑄𝑖) 

 

1. Apply a random sampling technique to select 

the sample Si which is denoted in Eq. (6) as 

follows:  

 

𝑆𝑖 = {𝑆𝑖|𝑖 = 1,2,3,4 … . . 𝑁𝑖 = 𝑠𝑖𝑧𝑒 𝑜𝑓 (𝜀)} (6) 

 

         Where approximation value is defined as 𝜀    
2. For every (𝑆𝑖 ∈ 𝑅), calculate r=random num 

(0.0.0.1) in every individual sample reading 

Si. 
Update the respective statistical value of 𝑅.  If 

[𝑟 < (𝑆𝑖, 𝑁𝑖)]  then update the respective statistic 

value of Si. 
3. Evaluate the value of 𝑄𝑖 for every individual 

value of Si to obtain the output as Si, 𝑄𝑖  

4. Plot the value of (Si, 𝑄𝑖 )  and construct a 

curve, then use the linear regression technique 

to cover the probable outcome in the range 

space. 

5. The mid-point value of the regression line is 

considered as Soptimal that is considered the 

initial size of the sample in the progressive 

sampling algorithm. The proposed technique 

minimized the 𝑄𝑖 values and significantly 

affects the overall runtime. 

3.4.2. Map reduce 

After the process of progressive sampling, the 

map-reduce technique is utilized which filters out the 

unrecognized samples which are present among the 

mapped samples. Reduction is made between each 

sample to eliminate the unstructured samples. The 

MapReduce algorithm is constructed based on two 

functions such as a map and reduce where the input 

is obtained from the key-value pairs which is denoted 

as (𝑘, 𝑣). The map function obtains a pair of inputs in 

a single iteration and provides a multiset of pairs i.e. 
{(𝑘1, 𝑣1), (𝑘2, 𝑣2), … , (𝑘𝑛, 𝑣𝑛)  }. The multiset union 

is denoted as 𝑈 which is comprised of the multisets 

of map function when it is applied to every pair of 

inputs. The set 𝑈 is partitioned into 𝑈𝑘̅ , where the 

specified key is denoted as 𝑘̅ and the 𝑈𝑘̅ is comprised 

of a pair of values denoted as (𝑘̅, 𝑣). Similarly, the 

reduce function takes the input key as 𝑘̅ and provides 

multiple sets of values. The outcome of the reduce 

function is utilized as the input for the mapping 

function to improve the MapReduce algorithms. The 

data provided by the mapping algorithm is segregated 

by key and transmitted to the reducing algorithm 

which is known as the shuffled step. By using this 

step, the grouped mapping is performed to filter out 

the unrecognized samples and provides the sampled 

set with better sample values. 

3.4.3. RadeMacher average 

The samples obtained from the map reduce 

technique are provided into the stage of RadeMacher 

average to improve the accuracy of the frequent data 

mining model. In provided hypothesis ℎ,  the 

generalization error is defined as the probability that 

the randomized sample gets uncategorized. The 

general aim of every learning algorithm is to detect a 

hypothesis with the least error rate, but it can’t be 

suited while evaluating the sample classes because it 

is dependent on probability distribution. However, 

training the error samples has the probability to 

minimize the generalization error and the 

mathematical expression to minimize the error rate is 

presented in Eq. (7) as follows: 

 

𝜀𝑛(ℎ) = 1/𝑛 ∑ 𝐿(ℎ(𝑋𝑖), 𝑍𝑖
𝑛
𝑖=1 )                  (7) 

 

Where 𝐿 is known as the loss function and it is 

defined as 𝐿 = {(1, 𝑖𝑓𝑧 ≠ 𝑧′), (0, otherwise)}   

The empirical risk minimization technique aids in 

the occurrence of a minimal error rate and ensures the 

ERM with small error bound which lies in the range 

of 𝑆𝑢𝑝ℎ∈𝐻|𝜀𝑃(ℎ) − 𝜀𝑛(ℎ)|. The variation in the error 

of hypothesis and true generalization convergence 

tends to infinity. The RadeMacher value lies in the 

range of +1 and -1 with the individual probability of 

½. Assume the RadeMacher variables as 

𝑟1,𝑟2, … , 𝑟𝑛and the RadeMacher penalty is defined in 

Eq. (8) as follows: 

 

𝑅𝑛(𝐻) = 𝑆𝑢𝑝ℎ∈𝐻|1/𝑛 ∑ 𝑟𝑖 𝐿(ℎ(𝑋𝑖), 𝑦𝑖
𝑛
𝑖=1 )|  (8) 
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The symmetrical inequality of the empirical 

process is represented in Eq. (9) as follows:  

 

𝐸 = {𝑆𝑢𝑝ℎ∈𝐻|𝜀𝑃(ℎ) − 𝜀𝑛(ℎ)|} ≤ 2𝐸{𝑅𝑛(𝐻)} (9) 

 

Where the choices were taken among the 

RadeMacher random variables. The standard 

concertation of the inequalities with minimal 

probability value is denoted as following Eq. (10): 

 

𝜀𝑝(ℎ) ≤ 𝜀𝑛(ℎ) + 2 𝑅𝑛(𝐻) + 𝜂(𝛿, 𝑛)            (10) 

 

Where 𝜂(𝛿, 𝑛) is the smallest error term which 

regulates the randomization among the samples. The 

RadeMacher penalties are applied to provide an 

approximate solution for the progressive sampling 

algorithm. The minimum count of samples which is 

required to verify ERM with the distance 𝜀 cretes 

reduced generalization error for every ℎ ∈ 𝐻 and the 

RadeMacher stopping time 𝑉(𝜀, 𝛿)  with the 

parameters (𝜀, 𝛿), the value of 𝑉(𝜀, 𝛿) is defined in 

Eq. (10) as follows: 

 

𝑉(𝜀, 𝛿) = 𝑚𝑖𝑛{𝑛𝑖 = 2𝑖𝑛0(𝜀, 𝛿)|𝑅𝑛𝑖(𝐻) < 𝜀} (11) 

3.4.4. RadeMacher average bounding 

This section describes the steps involved in 

bounding the RadeMacher average. Initially, the item 

sets are sorted based on their frequencies. Assume 

𝑇𝑠({𝑎})  is the set of sorted transaction items that 

comes under the set of broken arbitrary items. 

Consider the transaction 𝑇𝑠({𝑎}) which is in the order 

of set 𝐶𝑎.  The following steps must be employed 

before transactional sample orders, 

1. Before performing transactions with high 

amounts of  𝐶𝑎 ,  the items set should be 

allocated in order of 𝑎. 
2. The total count of transactions depends on the 

tie-breaking criterion where zero or more 

transaction item occurs in the order of 𝑎. 
Let 𝐶𝑎,𝑟  be the count of transactions which is 

contained in the set of sorted transactional items 

𝑇𝑠({𝑎}) which comes in the order of set 𝑎.  
The least number of items contained in the 

transactional set 𝑇𝑠({𝑎}) is denoted as ℎ𝑎,𝑟 which is 

presented in Eq. (12) as follows: 

 

ℎ𝑎,𝑟 = ∑ 𝑔𝑎,𝑗
𝑋𝑎
𝑗≥𝑟                                        (12) 

 

Where 𝑋𝑎 is the maximum value of 𝑟 which exist 

in the transaction set and ℎ𝑎,𝑟 is the least number of 

items present in the set. 

3.4.5. Mining the frequent item set 

The probable conditions to stop scanning the 

sample are verified and the minimum index value  𝜔̃ 

is evaluated and detected by computing 𝑠.  To 

compute the value of 𝜔̃, the sample values of ℎ𝑎,𝑟 

and 𝑔𝑎,𝑗 are considered. When the order of sample is 

obtained from the varying frequencies, then it is 

sufficient to look over every individual transaction 

sets based on the order of every item set. Slight 

modifications need to be performed to get the 

algorithm for evaluating the approximates to the set 

of top frequent item sets. The evaluation of algorithm 

is evaluated by stricter stopping conditions and 

performs an accurate mining algorithm to identify the 

high frequent item sets in the provided data samples. 

Thus, the RadeMacher average is used in progressive 

sampling technique to mine out the frequent item sets.   

4. Results and analysis  

This section provides results and analysis of the 

proposed empirical sampling algorithm using 

RadeMacher average. The efficiency of the proposed 

method is evaluated by means of run time, absolute 

estimation error and prediction error. The result 

section is sub sectioned into two categories such as 

performance analysis and comparative analysis. In 

performance analysis, the efficiency of the 

RadeMacher average used in the proposed sampling 

algorithm is evaluated with Vapnik-Chervonenkis 

(VC) dimension. In a comparative analysis, the 

efficiency of the proposed sampling algorithm using 

RadeMacher average is evaluated with the existing 

sampling techniques discussed in the related works of 

this paper.  

4.1 Experimental setup 

The proposed sampling algorithm using 

RadeMacher average is implemented using python 

programming language to evaluate the estimation 

error, prediction error and run time. The evaluation is 

carried out in a system with an Intel i5 2.7 GHz 

processor, 6GB random access memory (RAM) and 

windows 10 operating system.  

4.2 Performance analysis 

The performance of the RadeMacher average 

used in the proposed sampling algorithm is evaluated 

with the efficiency of VC dimension method. The 

performance among them is evaluated by means of 

runtime, absolute estimation error and selective 

prediction error. Table 1 shown below provides the  

 



Received:  May 24, 2023.     Revised: June 29, 2023.                                                                                                       204 

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023           DOI: 10.22266/ijies2023.1031.18 

 

Table 1. Performance evaluation based on run time 

Number of  

Samples 

Run time of 

RadeMacher 

average (ms) 

Run time of 

VC dimension 

(ms) 

20 132 143 

40 148 159 

60 169 175 

80 198 210 

100 212 223 

 

 
Figure. 2 Graphical representations for runtime 

 
Table 2. Performance evaluation based on the absolute 

estimation error  

Run time 

(ms) 

Absolute 

estimation error 

for RadeMacher 

average (%) 

Absolute 

estimation error 

for VC 

dimension (%) 

120 0.21 0.28 

140 0.33 0.40 

160 0.46 0.53 

180 0.62 0.78 

200 0.89 0.97 

 

results obtained by evaluating the run time, 

estimation error, the prediction error and the results 

are evaluated based on the number of samples. Table 

1 provides the results obtained from the run time of 

RadeMacher and VC dimensions. 

The results from Table 1 show that the 

RadeMacher average has taken minimum run time 

which ranges from 132ms-212ms whereas the VC 

dimension has taken 143ms -223ms for the same 

number of samples. This shows that the RadeMacher 

has taken minimum run time while comparing with 

the VC dimension. The better result of RadeMacher 

is due to the efficiency of RadeMacher bounds which 

aids in precise theoretical settings and distribution 

dependent. The graphical representation for the run 

time is shown in Fig. 2 as follows, 

Secondly, the performance of RadeMacher 

average is compared with VC dimension by means of 

absolute estimation error. The absolute estimation 

error is evaluated by measuring the variation between  

 

 

 
Figure. 3 Graphical representations for the results of 

absolute estimation error 

 
Table 3. Performance evaluation based on prediction 

error 

Number of  

Samples 

Prediction error 

of RadeMacher 

average (%) 

Prediction 

error of VC 

dimension (%) 

20 0.18 0.22 

40 0.24 0.37 

60 0.29 0.43 

80 0.41 0.51 

100 0.54 0.67 

 

 

the inferred value and the actual value. Table 2 

represented below shows the result of the error while 

evaluating different run times. 

The results from Table 2 show that the 

RadeMacher average used in the proposed method 

obtained a minimum error rate which ranges from 

0.21% to 0.89% whereas the error rate of VC 

dimension ranges from 0.28% to 0.97%. This result 

shows that RadeMacher has occurred a minimum 

error while comparing with VC dimension. The 

graphical representation for evaluation of absolute 

estimation error is shown in Fig. 3 as follows, 

Finally, the performance is evaluated by means of 

prediction error. The prediction error is evaluated by 

the variation that occurred while predicting the 

number of frequent items set for the provided number 

of sample data. Table 3 shows the results obtained 

from prediction error while predicting the frequent 

item sets. 

The results from Table 3 show that the 

RadeMacher average has obtained a minimum error 

rate of 0.18% to 0.54% which is comparatively lower 

than the prediction error of the VC dimension which 

is 0.22% to 0.37%. The better result is due to the 

bound used by RadeMacher which defines the upper 

limit of the input data to maintain it between the 

probably approximate correct (PAC) Framework. 

The graphical representation for the results of 

prediction error is represented in Fig. 4 as follows: 
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Figure. 4 Graphical representations for the results 

obtained from prediction error 

 
Table 4. Comparative analysis for real time data obtained 

from smart phone accelerometer  

Sampling 

methods 

Dataset Processing 

time (ms) 

ScaSRS [19] Smart phone 

accelerometer 

362 

Smart phone 

gyroscope 

454 

ESA-RMA Smart phone 

accelerometer 

212 

Smart phone 

gyroscope 

387 

4.3 Comparative analysis 

This section provides the comparison results of 

the proposed empirical sampling algorithm with 

sampling with existing approaches. The comparison 

is performed with two datasets such as HAR dataset 

and the real time dataset from accelerometer and 

gyroscope. The existing ScaSRS [19] is used to 

evaluate the proposed approach with real time data 

obtained from accelerometer and gyroscope which is 

represented in Table 4. In Table 5, the proposed 

approach is evaluated with VertTIRP [22] for HAR 

dataset. 

The results obtained from Table 4 show that the 

proposed ESA-RMA has achieved better results by 

taking minimal processing time than ScaSRS for both 

the data obtained from smart phone accelerometer 

and smart phone gyroscope. For instance, the run 

time of the proposed ESA-RMA when evaluated for 

smart phone accelerometer is 212ms which is 

comparatively lower than the time taken by ScaSRS 

(362 ms). Similarly, for smart phone gyroscope 

dataset, the proposed approach has taken processing 

time 387 ms which is relatively minimum than the 

existing ScaSRS (454 ms). The better result of the 

proposed approach is due to the bounds of 

RadeMacher which helps in data distribution and its 

efficiency in defining the limit of the input data to  

 

Table 5. Comparative analysis for HAR dataset 

Sampling 

methods 

Dataset Processing time 

(s) 

VertTIRP [22] HAR dataset 7.82  

ESA-RMA 5.43 

 

 

maintain it between the probably approximate correct 

(PAC) framework.  
Secondly, the performance of the proposed 

approach is evaluated with HAR dataset. The Table 5 

depicted below presents the result obtained while 

evaluating the proposed approach with VertTIRP. 

The comparison is performed by considering the run 

time as a common performance metric for 100 

epsilons. 

The results from Table 2 shows that the proposed 

ESA-RMA had took minimum time of 5.43 sec to 

mine the frequent pattern from HAR dataset whereas 

the existing VertTIRP took processing time of 7.82 

sec. An effective data distribution performed by 

RadeMacher approach helps to describe the limit of 

the input data and helps to mine the frequent itemset 

effectively.       

5. Conclusion 

Sampling the big data is considered a challenging 

task due to the presence of frequent item sets present 

in it. This research introduced an empirical sampling 

algorithm for the application of frequent item set 

mining. The proposed empirical approach utilized 

RadeMacher average for bounding the samples and 

the bounds of RadeMacher which helps in data 

distribution and its efficiency in defining the limit of 

the input data. Furthermore, the experimental 

findings validate the efficiency of the proposed ESA-

RMA technique to its processing time. The 

performance of ESA-RMA is evaluated with the 

existing sampling methods such as ScaSRS and 

VertTIRP. The obtained results show that the 

proposed ESA-RMA has taken a minimum run time 

of 212 ms for smart phone accelerometer dataset 

whereas ScaSRS have taken processing time of 387 

ms. In the same way for HAR dataset, the proposed 

approach had taken the processing time of 5.43 ms 

whereas the existing VertTIRP had took 7.82 ms 

respectively. The future work will be based on 

implementing the proposed approach with high 

complex datasets. 
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Notation list 

Parameter Description 

𝑓𝐷 Normal frequency value of the 

Itemset 

𝐴 Arbitrary order 

𝑇𝐷 Transaction dataset 

𝑓𝐷
(𝑘)

 Maximum frequency value of 

the Itemset 

𝐼 Itemset 

𝑛 Number of iteration 

ε Approximation value 
𝑅 Range of Itemset 

𝑠 Size of the sample 

𝑆𝑜𝑝𝑡𝑖𝑚𝑎𝑙 Statistic optimal size based on 

divergence 

𝑆𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 Scheduled sample 

𝑆𝑖 Selected sample 

𝑘, 𝑣 Key value pairs 

𝐿 Loss function 

𝜂(𝛿, 𝑛) Error term 

𝑉(𝜀, 𝛿) RadeMacher stopping time 

𝑇𝑠({𝑎}) Set of sorted transaction items 

ℎ𝑎,𝑟 Least number of item in set of 

sorted transaction 

𝐶𝑎,𝑟 Count of transactional item set 

𝑋𝑎 Maximum value in transaction 

set 
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