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Abstract: Light field imaging, which can gather global visual data, has garnered attention from the computer world 

in recent years. Inter and intra frame correlation, big data storage, and poor reconstructed depth quality still plague 

light field area. In this work, greedy discrete wavelet and poincare recurrence network (GDW-PRN) is proposed for 

robust lossless image compression of hyper spectral images. First, spatial preprocessing is carried out using discrete 

reduction wavelet transform to remove unwanted artifacts. Next, dimensionality reduced visual data representation is 

applied by means of greedy band to the pre-processed images, therefore addressing the issues related to large data 

storage. Finally, lossless image compression is performed by utilizing poincare recurrence network. The entire 

proposed work was carried out on light field hyperspectral imagery data using MATLAB simulation tool. The 

proposed work has been compared to the existing methods such as compression based on differential pulse code 

modulation (C-DPCM), and 3D wavelet transform and spectrum learning with regression vector (3DWT-SRV). On 

comparison the acquired findings demonstrate that the suggested GDW-PRN process has high compression 

proportion light field image storage performance as well as leading to high peak signal to noise ratio (PSNR). 

Keywords: Light field image, Lossless compression, Discrete reduction wavelet, Spatial preprocessing, Greedy 

band, Poincare recurrence, Neural network. 

 

 

1. Introduction 

Military, crop, and marine pollution monitoring 

use hyperspectral remote sensing. The top space 

agencies in the world have grouped together to form 

a consortium called the consultative committee for 

space data systems (CCSDS). Several widely used 

lossless compression methods have been suggested 

for hyperspectral imagery. Using differential-pulse-

code-modulation, a deep learning method for 

lossless compression in hyperspectral images, 

improves PSNR and prediction accuracy [1]. 

Spectral information pitfalls improved prediction 

accuracy but decreased PSNR. Affinity between 

adjacent bands will design a discrete reduction 

wavelet transform spatial preprocessing and greedy 

band dimensionality. Maximizing correlation and 

compressing reduces visual data representation. 

Based on 3D coefficient regression, 3D wavelet 

transform and spectrum learning with regression 

vector (3DWT-SRV) was proposed in [2]. HSIs were 

sparsely represented using a 3D wavelet transform. 

The peak signal-to-noise ratio (PSNR) and the 

accuracy of classification were the primary research 

objectives, while compression ratio was ignored. 

Poincare recurrence network lossless compression, 

using poincare recurrence theorem, improves PSNR 

and reduces MSE. Thus, compression proportion 

improves. 

1.1 Contribution  

The contributions of this work begin with the 

proposal of a novel preprocessing and 

dimensionality reduction method for lossless hyper 

spectral image compression. Secondly, the 

preprocessing is carried out using discrete reduction 

wavelet transform to remove noise. Later greedy 

band visual data representation is used which 

improves PSNR for robust dimensionality reduced 

hyper spectral images and also carried weight-
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updating poincare recurrence network lossless 

image compression/decompression reduces light 

field image storage. Finally the the proposal is 

compared to existing methods on a large test bed 

using hyper spectral images to prove its superiority. 

1.2 Paper formulation  

The organized preparation of the article is 

presented as, section 2 evaluates the associated 

works done in the field of lossless image 

compression with light field imaging. Section 3 

designates the details of the suggested greedy 

discrete wavelet and poincare recurrence network 

method. In section 4, experimental evaluation and 

discussion made with two standard methods is 

presented. Section 5 explains conclusions of the 

paper.  

2. Related works 

Light field imaging has gained attention from all 

walks of life, enabling a wide range of computer 

applications. [3] assessed light field image quality 

using log Gabor features to improve visual system 

perception. [4] covered light field imaging and its 

uses in compression, editing, and processing. 

Machine learning can compress images in lossless 

pattern. [5] proposed a deep residual network with 

meyer hat wavelet transform to compress faster. 

Image compression's main drawback is storage 

and time. Therefore, a distributed, improved post-

transform improved compression values by 

enhancing bit plane encoding [6-7]. The authors in 

[8] created a rate control algorithm to simplify and 

improve image compression. The authors in [9] 

reviewed data compression methods whereas the 

authors in [10] suggested deep neural networks 

compress images and videos. The researchers of [11] 

designed efficient data compression algorithms with 

optimal compression rate-latency trade-off. The 

researchers of [12] reviewed data compression 

methods to reduce communication data size whereas 

the authors of [13] suggested studying correlation 

factor-based image compression algorithms. 

The researchers in [14] used singular value 

decomposition and matrix completion to retrieve 

and compress images efficiently (SVD). A 

significant limitation of SVD is that it can be 

computationally costly for large matrices, making it 

impractical for use with very large images. 

Additionally, SVD may not be appropriate for 

images with highly localised or complex structures, 

as the low-rank approximation generated by SVD 

may not accurately represent these structures. In 

[15] the authors presented a deep recurrent neural 

network for the lossless compression of 

multispectral and hyperspectral data. In order to 

accurately model the data distribution, this method 

requires a large amount of training data, which can 

be difficult to acquire for hyperspectral and 

multispectral data due to their high dimensionality 

and complexity. Moreover, training deep RNNs can 

be computationally costly and may necessitate 

specialised hardware to accomplish reasonable 

training times. In [16], lossless compression and 

pre-quantization were used to rebuild the image 

using convolutional neural network (CNN). Pre-

quantization can result in information loss, which 

can affect the image's fidelity after reconstruction. 

This loss of information can be minimised by 

employing higher quantization levels, but at the 

expense of an increase in compression artefacts and 

a decrease in image quality. 

Moreover, the quality of the compressed data 

used to train the CNN has a significant impact on 

the quality of the reconstructed image. If the 

compressed data is of poor quality or contains 

significant artefacts, the reconstructed image may 

contain these artefacts and be of lower quality. 

Whereas compressing medical images were 

presented in [17] using wavelet based volumetric 

medical image compression. A limitation of 

wavelet-based compression is that it can result in 

information loss, particularly when lossy 

compression techniques are employed. While a 

certain amount of loss is generally acceptable for 

medical images, excessive loss can lead to 

diminished diagnostic accuracy and 

misinterpretation. 

In addition, the compression efficacy of wavelet-

based techniques can be sensitive to the selection of 

wavelet basis and compression parameters, which 

can be difficult to optimise for various medical 

image types and applications. In [18], time series-

based temporal correlations improved data fidelity 

and size. Using temporal correlations between 

adjacent spectral bands can minimise data storage 

and transmission while maintaining image quality. 

This approach has limitations.  

Calculating temporal correlations between 

adjacent spectral bands is computationally 

expensive in time-series-based hyperspectral image 

compression. For big hyperspectral datasets, this 

slows and complicates compression.  

Noise and temporal correlations can also impair 

image quality. Significant temporal connections 

between spectral bands diminish compression 

efficiency and reconstruction quality. 

The authors in [19] presented a distributed 

source coding-based lossless compression algorithm. 
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The effectiveness of DSC-based compression can be 

dependent on the characteristics of the hyperspectral 

data that is being compressed. If spectral bands are 

highly correlated, DSC-based compression may not 

result in significant compression efficiency gains. A 

hybrid prediction method [20] used fractal function 

to reduce decoding quality and increase PSNR rate. 

It may be computationally challenging to derive the 

fractal functions used for prediction, which is a 

limitation of this method. Larger datasets may 

necessitate a lengthier computation time, which may 

make this method impractical for some applications. 

The effectiveness of this method can also be 

contingent on the specific characteristics of the 

compressed hyperspectral data. If the spectral bands 

have high variability or low correlation, the 

accuracy of the fractal function predictions may be 

limited, which can result in diminished compression 

efficiency and lower quality reconstructions. 

There have been numerous proposals for 

compressing hyperspectral and multispectral images, 

but each of the approaches described in this section 

has its own limitations. SVD can be computationally 

expensive and may not represent complex structures 

accurately. Deep RNNs require a significant 

quantity of training data and can be computationally 

costly. CNN pre-quantization can result in data loss 

and degraded image quality. Information loss is 

possible with wavelet-based compression, which is 

also sensitive to the selection of wavelet basis and 

compression parameters. Noise and temporal 

correlations can degrade time-series-based 

compression, which is computationally costly. The 

effectiveness of DSC-based compression is 

dependent on the characteristics of the hyperspectral 

data, and the hybrid prediction method may be 

computationally difficult for larger datasets and 

constrained by low correlation or high variability of 

spectral bands. 

Based on these limitations, this paper presents a 

greedy discrete wavelet and poincare recurrence 

network (GDW-PRN) for lossless image 

compression of hyper spectral images to reduce light 

field imaging storage and improve PSNR. 

3. Greedy discrete wavelet and poincare 

recurrence network  

Light field imaging can capture more visual data 

than traditional photography, which can only capture 

a 2D representation of the light integrating angular 

domain. 

We preprocess the hyperspectral image with 

discrete reduction wavelet transform to extract 

spatial information. In a semi-supervised graph- 
 

 
Figure. 1 Block diagram of greedy discrete wavelet and 

poincare recurrence network 

 

based framework for lossless image compression, 

greedy band affinity (GBA) fuses preprocessed 

spatial and spectral information. Finally, poincare 

recurrence neural network improves PSNR and 

provides lossless image compression. Fig. 1 shows 

the greedy discrete wavelet and poincare recurrence 

network method block diagram. Hyper spectral 

image lossless compression involves three steps, as 

shown above namely preprocessing, dimensionality 

reduction, and compression/decompression. 

3.1 System model 

Using the hyperspectral image, a graph-based 

model is created. The vertices represent the input 

sample images, and the edges represent 

hyperspectral image pixel similarity. Our 

hyperspectral image is a graph ‘G=(V, E)', where ‘V' 

is the vertices set and ‘E' is the edge set. 

3.2 Discrete reduction wavelet transform spatial 

preprocessing  

To remove noise and smooth hyperspectral 

images, discrete reduction wavelet transform spatial 

preprocessing is applied. It enhances spatial texture 

data to advance lossless image compression. Spatial 

preprocessing uses discrete reduction wavelet 

transform. Fig. 2 illustrates discrete reduction 

wavelet transform spatial preprocessing. 

As illustrated in the above figure, let us consider 

an input signal ‘ 𝑝 ’ with the discrete wavelet 

transform measured via a filter series. Initially, it is 

passed via a low pass filter ‘𝑙’ and then via a high 

pass filter ‘ℎ’. This is arithmetically expressed as 

follows: 

 

𝑞𝑙𝑜𝑤[𝑛] = ∑ 𝑝[𝑖]𝑙[2𝑛 − 𝑖]∞
𝑖=−∞                  (1) 

 

𝑞ℎ𝑖𝑔ℎ[𝑛] = ∑ 𝑝[𝑖]ℎ[2𝑛 − 𝑖]∞
𝑖=−∞                 (2) 



Received:  April 18, 2023.     Revised: July 13, 2023.                                                                                                       389 

International Journal of Intelligent Engineering and Systems, Vol.16, No.5, 2023           DOI: 10.22266/ijies2023.1031.33 

 

 
Figure. 2 Structure of discrete reduction wavelet 

transform spatial 

 

 
                     (a)                                    (b)   

 
                        (c)                                      (d)   

Figure. 3 Discrete isotropic reduction wavelet transform: 

(a) Input Image, (b) Pre-Processed Image, (c) 1 * 2 band 

image, and (d) 2 * 2 band image 

From the above two Eqs. (1) and (2), ‘𝑞𝑙𝑜𝑤[𝑛]’, 
‘𝑞ℎ𝑖𝑔ℎ[𝑛]’ represents the resultant low pass and high 

pass filter for the corresponding input signal ‘𝑝’ sub 

sampled by ‘2’, further processing with high pass ‘ℎ’ 

and low pass ‘𝑙 ’ filter, 𝑥  represents multiplication 

and is written simply as given below. 

 

𝑞𝑙𝑜𝑤 = (𝑝 𝑥 𝑙) ↓ 2                              (3) 

 

𝑞ℎ𝑖𝑔ℎ = (𝑝 𝑥 ℎ) ↓ 2                              (4) 

 

From the above Eqs. (3) and (4), ‘𝑞𝑙𝑜𝑤 ’ and 

‘𝑞ℎ𝑖𝑔ℎ’, forms the new low pass filter and high pass 

filter correspondingly. Our spatial preprocessing 

uses discrete isotropic reduction wavelet transform 

with these filter values. Coefficient ‘C (i,j)' 

orthogonalizes signal ‘p'. This is further applied to 

high pass coefficients using wavelet reduction 

function ‘𝑅𝜃(𝐶𝑖,𝑗)’ and ‘𝛼(𝐶) = {𝑐21
1/2

, 𝑐12
1/2

, 𝑐22
1/2

}’. 

This is mathematically formulated as given below.  

 

𝑅𝜃(𝐶𝑖,𝑗) =  {
𝐶𝑖,𝑗 −

𝜃

𝛼(𝐶)
, 𝑖𝑓𝛼(𝐶) ≥ 𝜃 

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                 (5) 

 

Fig. 3 given below shows the resultant discrete 

isotropic reduction wavelet transform spatial 

preprocessed image when applied to the input signal.  

Fig. 3 given above shows the original input HIS. 

Next, pre-processed image in the range of 2 * 1 

band images is shown in (b), a 1 * 2 band image is 

shown in (c) and 2 * 2 band images is depicted in 

(d) via wavelet reduction function.  

3.3 Greedy band dimensionality reduced visual 

data representation  

After wavelet reduction, greedy band affinity is 

applied to each band of the hyper spectral 

preprocessed highly correlated image. In our paper, 

greedy band ordering minimises the dimensionality 

of preprocessed HIS data in affine "A" direction, 

which includes a number of interrelated signals, 

while retaining divergences via correlation. The 

affinity between bands for a distortion increases. 

The measured value that discloses the proximity 

between the two independent bands is the spectral 

band correlation. It represents the affinity between 

the two bands ‘𝑏𝑖’ and ‘𝑏𝑗’ indicated as a coefficient 

expressed as given below.  

 

𝐷𝑅𝐼 = 𝐴𝑏1𝑏2
=  

∑ ∑ [𝑏1(𝑖,𝑗)]−[𝑏2(𝑖,𝑗)]𝑛
𝑗=1

𝑚
𝑖=1

√∑ ∑ [𝑏1(𝑖,𝑗)]2𝑛
𝑗=1

𝑚
𝑖=1 √∑ ∑ [𝑏2(𝑖,𝑗)]2𝑛

𝑗=1
𝑚
𝑖=1

                    (6) 

 

  

 (c)                      
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Dimensionality 

Variation 1 

Dimensionality 

Variation 2 

Dimensionality 

Variation 3 

           (a)                           (b)                            (c)   

Figure. 4 Dimensionality reduced data representation: (a) 

2 * 1 band image, (b) 1 * 2 band image, and (c) 2 * 2 

band image 

 

According to Eq. (6), bands "b 1" and "b 2" are 

highly affined "A" if the coefficient is high, and less 

affined if the coefficient is low. Dimensionality-

reduced data representation with affine greedy band 

yields Fig. 4. 

Affine proximity greedy band produces 

dimensionality reduced images for three bands, as 

shown above. Discrete reduction wavelet transform 

and greedy band decomposition pseudo code is 

below. 

 

Algorithm 1 Discrete reduction wavelet transform 

and greedy band decomposition 

Input: Samples ‘𝑆 = 𝑠1, 𝑠2, … , 𝑠𝑛’ 

Output: Dimensionality reduced images ‘ 𝐷𝑅𝐼 =
𝑑1, 𝑑2, … . , 𝑑𝑛’ 

Step 1: Initialize bands ‘𝑏1’ and ‘𝑏2’  

Step 2: Begin 

Step 3: For each samples ‘𝑆’ 

Step 4: Evaluate discrete wavelet transform 

measured via filter series using equation (1) and (2) 

Step 5: Evaluate low and high pass filter using 

equation (3) and (4) 

Step 6: Measure wavelet reduction function using 

equation (5) 

Step 7: Obtain affinity between the two bands ‘𝑏𝑖’ 

and ‘𝑏𝑗’ using equation (6) 

Step 8: Return (dimensionality reduced images)  

Step 9: End for  

Step 10: End  

 

3.4 Discrete reduction wavelet transform and 

greedy band decomposition  

Discrete reduction wavelet transform and greedy 

band decomposition describe two processes. 

Dimensionality reduction, HIS preprocessing.  
 

 
Figure. 5 Structure of poincare recurrence network 

lossless compression and decompression 

 

Discrete reduction wavelet transform preprocesses 

high pass coefficient. Greedy band affinity 

dimensionality lowers wavelet. Greedy band affinity 

reorders bands in a preprocessed highly correlated 

image set to maximise band affinity and 

compression. 

3.5 Poincare recurrence network lossless image 

compression  

HSI is more popular for remote sensing. HSI 

data volume grows rapidly as spectral resolution 

increases, requiring a lot of storage. Lossless 

compression preserves image data well with a low 

compression ratio. Poincare recurrence network 

lossless image compression (PRN-LIC) improves 

peak signal-to-noise ratio and light field image 

storage. Fig. 5 illustrates poincare recurrence 

network lossless image compression. 

As shown above, the dimensionality reduced 

images "DRI" are split into bands "n" of "n*n" size 

to reduce run time. Each band is reconstructed into 

an m-dimensional vector, written as ‘V={v 1,v 2,...,v 

m }', where ‘m' is the vector size. Encryption is 

below. First, dimensionality-reduced image is split 

into bands ‘𝑏𝑖, 𝑏𝑗 ' and weights ‘𝑊𝑖𝑗 ' are generated 

randomly ‘Rand'. The math is below. 

 

 𝑊𝑖𝑗 = [𝑅𝑎𝑛𝑑(𝑏𝑖, 𝑏𝑗)]                   (7) 

With the aid of the weight, the hidden layer ‘𝐻𝑖𝑗’ 

and output layer ‘𝑂𝑖𝑗’ is measured as given below.  

 

 𝐻𝑖𝑗 =  
1

1+𝑒𝑥𝑝
𝑊𝑖𝑗∗𝑉𝑖

                  (8)  

 

 𝑂𝑖𝑗 =  
1

1+𝑒𝑥𝑝
𝑉𝑖∗𝐻𝑖𝑗

                  (9) 

 

The exponential product of weight “𝑊𝑖𝑗" and its 

vector "𝑉𝑖" of "m" dimension evaluates the hidden 

layer from Eqs. (8) and (9). The hidden layer output 

‘ 𝐻𝑖𝑗 ' and the output layer vector ‘V i' of ‘m' 

dimension are evaluated similarly. After that, the 

weights are updated. 
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(a) 

         
(b) 

          
(c) 

Lossless 

Compressed 

Image 

Dimensionality 

Reduced 

Image 

Lossless De-

compressed 

Image 

Figure. 6: (a) dimensionality reduced image, (b) lossless 

compressed image, and (c) lossless de-compressed image 

 

∆𝑊𝑖𝑗(𝑝) =  𝜇 𝑂𝑖𝑗(𝑝) 𝛿𝑖𝑗(𝑝)                  (10) 

 

From the above Eq. (10), the updated weights 

‘∆𝑊𝑖𝑗’ of perceptron ‘𝑝’ is obtained based on the 

output layer resultant value ‘ 𝑂𝑖𝑗(𝑝) ’, a learning 

factor ‘𝜇 ’ and error gradients ‘𝛿𝑖𝑗(𝑝)’. The error 

gradient is measured as given below.  

 

𝛿𝑖𝑗(𝑝) = 𝑂𝑖𝑗(𝑝)[1 − 𝑂𝑖𝑗(𝑝)][𝑂𝐷 − 𝑂𝐴]       (11) 

 

From the above equation (11), the error gradient 

for each perceptron ‘ 𝛿𝑖𝑗(𝑝) ’ is evaluated by 

measuring the difference between the desired values 

‘ 𝑂𝐷 ’ and the actual value ‘ 𝑂𝐴 ’ respectively in 

addition to the output layer resultant value ‘𝑂𝑖𝑗(𝑝)’. 

Our work uses poincare recurrence (PR) to permute 

after error gradient measure and keep pixel values 

unchanged. See below. 

 

𝑇𝑘(𝑏𝑖, 𝑏𝑗) =  

𝑇𝑘−1[𝑚𝑜𝑑𝑒 (2𝑏𝑖 + 𝑏𝑗, 𝑁), 𝑚𝑜𝑑 (𝑏𝑖 + 𝑏𝑗, 𝑁)]  (12) 

 

From the above Eq. (12), ‘𝑁’ corresponds to the 

number of pixels, with bands representing ‘𝑏𝑖’ and 

‘𝑏𝑗’ with the output image being ‘𝑇𝑘(𝑏𝑖, 𝑏𝑗)’. Finally, 

encryption ‘𝐸’ is performed by combining the PR 

‘ 𝑇𝑘(𝑏𝑖, 𝑏𝑗) ’ and updated ‘ ∆𝑊𝑖𝑗(𝑝) ’ forming 

modulus of number of neurons ‘ 𝑙 ’ as expressed 

below.  

 

𝐸 = [𝑇𝑘(𝑏𝑖, 𝑏𝑗) + ∆𝑊𝑖𝑗(𝑝)] 𝑚𝑜𝑑 𝑙             (13) 

 

Fig. 6 given below shows the resultant images 

after compression/decompression. 

The pseudo code representation of poincare 

recurrence network lossless compression is given 

below.  

Algorithm 2 Poincare recurrence network lossless 

compression 

Input: Dimensionality reduced images ‘𝐷𝑅𝐼 =
𝑑1, 𝑑2, … . , 𝑑𝑛’, learning factor ‘𝜇’ 

Output: PSNR improved lossless compression  

Step 1: Initialize band size ‘𝑛 ∗ 𝑛’, vector size 

‘𝑚’, pixels ‘𝑁’ 

Step 2: Begin  

Step 3: For each dimensionality reduced images 

‘𝐷𝑅𝐼’ 

Step 4: For each band ‘𝑏’ 

//compression  

Step 5: Measure random weight using equation 

(7) 

Step 6: Obtain hidden layer using equation (8) 

Step 7: Evaluate output layer using equation (9) 

Step 8: Update the weights using equation (10) 

Step 9: Measure error gradient using equation 

(11) 

Step 10: Evaluate Point Care Recurrence using 

equation (12) 

Step 11: Perform encryption with equation (13) 

Step 12: Return (compressed image ‘𝐶𝐷𝑅𝐼’) 

Step 13: End for  

Step 14: End for  

Step 15: End  

 
Table 1. Light field images storage of GDW-PRN, 

existing C-DPCM [1] and 3DWT-SRV [2] 

Samples Light field images storage (KB) 

GDW-

PRN 

C-DPCM 

[1] 

3DWT-

SRV [2] 

15 30 45 60 

30 60 90 120 

45 90 100 140 

60 120 135 160 

75 140 160 190 

90 180 190 210 

105 210 230 250 

120 230 280 310 

135 250 300 340 

150 290 340 390 

 

The poincare recurrence network lossless 

compression algorithm initialises bands with respect 

to each vector to obtain random weight for each 

dimensionality reduced image input.  

4. Experimental settings 

This section analyses recreation results to 
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evaluate greedy discrete wavelet and poincare 

recurrence network (GDW-PRN) for robust lossless 

image compression of hyper spectral images. Our 

experiments made use of a database obtained from 

the SPECIM hyperspectral image repository, which 

covers the 900 - 1700 nm spectral range and is 

extensively utilised in industrial quality control. [21]. 

To compare two methods, compression outcomes 

based on differential-pulse-code-modulation [1] 

method and outcomes of 3D wavelet transform and 

spectrum learning with regression vector (3DWT-

SRV) [2], the same images are used. Light field 

image storage and peak S/N ratio evaluate the 

proposed method. 

4.1 Performance measure of light field images 

storage 

A significant amount of storage is said to be 

incurred during lossless image compression/ 

decompression with respect to light field images 

storage. The light field images storage is 

mathematically expressed as given below.  

 

𝐿𝐹𝐼𝑆 = ∑ 𝑆𝑖 𝑀𝐸𝑀 (𝐶𝑜𝑚𝑝/𝐷𝑒𝑐𝑜𝑚𝑝)𝑛
𝑖=1      (14) 

 

From Eq. (14), light field images storage "LFIS" 

is measured by the samples provided as input "S i" 

and the memory consumed in compression or 

decompression "MEM (Comp/Decomp)" denoted 

by KB-worthy. Table 1 shows how GDW-PRN, C-

DPCM, and 3DWT-SRV compressed 150 samples at 

different values to store light field images. 

Compared to [1] and [2], proposed GDW-PRN 

stores light field images of reconstructed images 

better. 

Fig. 7 shows light field image compression/ 

decompression storage. 15–150 hyper spectral 

images of various sizes were examined. Samples 

increase compression rate and light field image 

storage. GDW-PRN consumed 30KB, [1] 45 KB, 

and [2] 60 KB in simulations for 15 samples with 

different image sizes. GDW-PRN reduces light field 

image storage by 16% over [1, 2]. 

4.2 Performance measure of PSNR 

Peak S/N ratio refers to the ratio of the original 

hyperspectral image and the distorted images.  The 

Peak S/N ratio is measured as follows, 

 

𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10 [
𝑆2

𝑀𝑆𝐸
]                     (15) 

 

𝑀𝑆𝐸 =  (𝑆 − 𝑆 ′)
2
                            (16) 

 
Fig. 7 Graphical representation of light field images 

storage 

 
Table 2. PSNR of GDW-PRN, existing C-DPCM [1] and 

3DWT-SRV [2] 

Samples PSNR (dB) 

GDW-PRN C-DPCM 

[1] 

3DWT-

SRV [1] 

15 39.04 37.3 35.85 

30 41.35 38.35 36.15 

45 42.55 39.55 37 

60 43.15 40.15 38.35 

75 45.55 41.35 39 

90 46 42 40.25 

105 46.15 44.55 40.35 

120 46.85 45.35 41 

135 47 45.85 42.45 

150 47.35 46 43 

 

 

 
Figure. 8 Graphical representation of PSNR 

 

From Eqs. (15) and (16), the peak S/N ratio is 

the log value of the possible pixel value of the 

hyperspectral sample image "S" and the mean 
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square error-MSE. Mean Square Error-MSE is the 

square variance between the original hyperspectral 

sample image "S" and noisy image "S^". The 

maximum pixel value is dB. Table 2 shows PSNR 

for hyper spectral images.  

Fig. 8 depicts PSNR with 150 samples. Peak S/N 

ratio, which affects characterization accuracy, is the 

ratio between the maximum possibility of a single 

and corrupting noise. It is widely used to assess 

lossless compression image restoration quality. 

The figure suggests that GDW-PRN improves 

PSNR. In other words, from the simulations with 25 

samples, the mean square error "MSE" using GDW-

PRN was 81dB, C-DPCM was 121dB [1] and 

169dB [2]. With this MSE value, the C-DPCM 

returned 39.04 dB, 37.30 dB, and 35.85 dB PSNR 

values [1, 2]. GDW-PRN had a higher PSNR than 

[1] and [2] based on simulation results. Greedy 

Band dimensionality-reduced visual data 

representation caused this. This Greedy Band 

measured two independent bands using proximity. 

GDW-PSNR PRN's was 6% and 7% better than [1] 

and [2]. 

In continuation to the performance evaluation 

compared for three parameters such as Light field 

images storage (KB) and peak signal to noise ratio 

(PSNR), the investigation has been extended for 

other quality metrics such as normalized cross-

correlation (NC), structural content (SC), and 

normalized absolute error (NAE) and are provided 

in Table 4. For the purpose of further investigation, 

the sample image considered was sample 2. The 

derived quality metrics for the sample 2 is provided 

in Table 3. The quality metrics NAE, SC and NCC 

are plotted in Fig. 9. Physical quality metric links 

the compressed image's mass to the unique image's 

weight globally. 

A small average value discrepancy indicates 

excellent image quality. This parameter is close to 1, 

so the method works. –1 to 1 is NCC. Values may 

drop over unity. Correlation coefficients of –1 and 

above 1 indicate perfect correlation and anti-

correlation. 

5. Conclusion  

Hyperspectral image lossless compression/ 

decompression using discrete wavelet greedy band 

and Poincare recurrence network is proposed. 

Wavelet reduction with sub sampling eliminates 

noise and improves decoding quality, providing a 

good simple band for visual data representation. 

Greedy band function reduces pre-processed hyper 

spectral image dimensions. Since each band is 

estimated by the affinity in the adjacent band,  
 

Table 3. Quality metrics derived for sample 2 

Sample Quality Metrics Values 

 

 

 

Sample 2 

 

Normalized Cross-

correlation (NC) 

1.0792 

Structural Content (SC) 0.8552 

and Normalized Absolute 

Error (NAE) 

0.1004 

 

 

 
Figure. 9 Quality metrics NAE, SC, NCC 

 

greedy proximity detection reduces dimensionality. 

Finally, poincare recurrence theorem 

compresses/decompresses. Experimental results 

show that the algorithm compresses hyperspectral 

images by improving PSNR and light field image 

storage. The mean square error using the proposed 

GDW-PRN was 81dB, which is less than the MSE 

of two other methods, indicating that the proposed 

work is better and the PSNR is automatically good. 

The algorithm also provided effective results for 

NAE, NCC and SC for a sample image. 
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