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Abstract: Accurate early detection and diagnosis of hepatocellular carcinoma (HCC) need a patient similarity network 

(PSN) to increase the patient’s survival rate. For this reason, the PSN with a dense graph convolutional neural network 

(pDenseGCN) model has been developed for liver cancer diagnosis. But an over-smoothing problem occurred in the 

GCN when increasing the network depth, resulting in poor classification performance. Therefore, this article proposes 

a novel inter-scale amalgam cluster DenseGCN (IACDGCN) model to tackle the over-smoothing problem and increase 

the accuracy of HCC detection. The major processes in this model are the following: (i) first, the similarity network 

fusion (SNF) and denoising auto-encoder (DAE) are used to create PSN and extract a latent embedding representation 

of multi-omics data, respectively; (ii) then, the obtained PSN and extracted feature matrix are given to the IACDGCN 

model for classification. This IACDGCN is built by comprising a cluster DenseGCN unit and a spatiotemporal 

attention unit with a larger receptive field (RF) to dynamically strengthen the intermediary feature maps. Also, an 

inter-scale combined temporal convolution unit is used to learn discriminable temporal feature maps via the mixture 

of various scale convolution kernels. Moreover, those feature maps are passed to the softmax classifier to get the 

probability of each class such as healthy and HCC patients. Finally, the experimental results show that the IACDGCN 

model realizes 96.6% accuracy which is higher than the random forest, artificial neural network (ANN), deep neural 

network (DNN) and DenseNet models on the liver hepatocellular carcinoma (LIHC) omics dataset. 

Keywords: Hepatocellular carcinoma, Patient similarity network, pDenseGCN, Over-smoothing, Cluster GCN, 

Spatiotemporal attention, Inter-scale combined temporal convolution. 

 

 

1. Introduction 

Liver cancer also known as HCC is the foremost 

prevalent type of cancer globally, and its incidence is 

growing every year [1]. According to global cancer 

statistics 2020, HCC kills around 830,000 people 

each year, making it the third largest cause of tumor-

related mortality in 2020 [2]. Early cancer detection 

has been proven in studies to enhance survival 

chances. However, early-stage liver cancer signs are 

rarely visible, most patients have been diagnosed in 

the middle or final stages when they are discovered, 

and diagnosis actions are restricted [3]. These aspects 

contribute to the poor diagnosis of HCC. As a result, 

it is critical to develop a system, which can execute 

early detection and enhance the diagnosis solutions 

of HCC [4]. 

In recent decades, the analysis of omics data has 

become more popular for tumor diagnosis due to the 

progress of gene sequencing methods, which 

increases the number of genetic information and 

allows scientists to use a wide range of omics data 

from various traits like proteomics, transcriptomics, 

epigenomics, and genomics [5]. Cancer detection and 

diagnosis models are often divided into machine 

learning and deep learning models that learn relevant 

genetic factors as biomarkers for HCC identification 

[6]. With the max-relevance and min-redundancy 

(mRMR), incremental feature selection (IFS), and 

support vector machine (SVM) classifier, a hybrid 

tumor diagnosis model [7] has been presented to 

satisfy the success rate of HCC diagnosis. On the 

other hand, machine learning models have the 
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complexity to process raw data directly so that they 

convert the raw data into suitable feature vectors. 

This results in a high computational cost. 

To combat this problem, deep learning models 

have widely emerged, which can learn complex 

patterns from original information to draw interest in 

bioinformatics [8-9]. Though these models 

outperform machine learning models like SVM, etc., 

they mostly utilize single omics data that limits the 

representation of each cancer feature and deep 

learning efficiency in tumor detection. Therefore, 

tumor diagnosis models based on several omics data 

are progressively developed [10]. They often relied 

solely on genetic information. Principally, 

interpretability is essential to comprehend the 

biological causes of cancer and establish specific 

treatments due to the fairly limited number of 

samples in genome sequencing [11]. This issue can 

be resolved by PSN and created interpretable models 

by combining multi-omics data [12]. But the standard 

deep learning frameworks such as convolutional 

neural networks (CNNs) were difficult to handle the 

PSN because it was non-Euclidean data.  

To alleviate these problems, Zhang et al. [13] 

developed the pDenseGCN based on the PSN and 

DenseGCN. Also, a vanishing gradient problem in 

GCN was resolved by densely connecting different 

layers that enhance the data flow in the network and 

process non-Euclidean data. The SNF was utilized to 

merge three distinct omics data and create the PSN. 

The DAE was utilized to capture a latent embedding 

interpretation of omics data. The DenseGCN was 

employed as a classifier based on the PSN and latent 

interpretation of omics data for HCC diagnosis. 

Conversely, its performance increases progressively 

with increasing the number of layers in GCN. By 

increasing the graph convolution (GConv) layers, the 

exploration for an accurate framework for the graph 

pattern may generate recurrent nodes in the novel 

embedding for a new deep layer. It is known as over-

smoothing, which degrades the DenseGCN’s 

accuracy while increasing the depth of GCN. 

Hence, the IACDGCN model is proposed in this 

study to resolve the above-mentioned problems in 

liver cancer detection. First, the PSN and latent 

representation of omics data are fed to the IACDGCN 

model, which comprises a Cluster DenseGCN to 

enhance memory and computational efficiency. Also, 

a spatiotemporal attention module with a larger RF is 

applied to dynamically enhance the discriminatory 

characteristics and the intermediary feature maps. 

Additionally, an inter-scale combined temporal 

convolution module is designed to create an adaptive 

temporal graph via the mixture of various scale 

convolution kernels. Furthermore, the obtained 

feature maps are learned by the Softmax function to 

classify healthy and HCC patients. Thus, the 

accuracy of HCC diagnosis can be increased by 

preventing over-smoothing problems using the 

IACDGCN model. 

The residual sections are planned as the 

following: Section 2 covers earlier research for HCC 

identification. Section 3 presents the IACDGCN 

model’s methodology and section 4 portrays its 

efficiency. Section 5 concludes the study. 

2. Literature survey 

A new ensemble framework was developed [14] 

by stacking learning and evolutionary computation 

schemes for automatically detecting HCC. Various 

machine learning classifiers were integrated to create 

stacking learning with a genetic optimizer to choose 

the gene features for all classifiers and detect the 

HCC precisely. But they have less accuracy on large-

scale multi-omics datasets. The DNN model [15] was 

presented for classifying liver cancer with microRNA 

data. Data normalization was done using various 

activation functions to improve DNN learning. But 

its accuracy was impacted by the vanishing gradient 

problems due to changes in parameters. 

The ANN [16] model was trained by the modified 

objective function to recognize HCC patient 

subgroups, which are biologically homogeneous and 

similar in survival when eliminating noise from the 

data. However, its sensitivity was poor since it needs 

more robust features to differentiate prognostic 

groups for HCC. A multi-task deep learning network 

(MTnet) [17] was designed to predict future 

macrovascular invasion in HCC. But its precision 

was less due to the limited number of samples. 

Cascaded fully CNN (CFCNN) [18] was 

developed for recognizing and segmenting liver 

cancer. Initially, the pre-processing and segmentation 

of CT scans were performed to segment liver lesion 

regions. Then, the graph cut method was used to 

extract features from the segmented region of lesions. 

Moreover, two CFCNNs were applied to classify the 

features into different kinds of liver cancers. But its 

accuracy was still not high while using multi-omics 

data. 

An automated recognition of liver cancer using 

hybrid pre-trained CNN models [19] was presented. 

The structure of the model was characterized by the 

transfer learning strategy. The best model was chosen, 

which can learn other pre-trained CNNs, and the 

results of the final layer of all these networks were 

fused for liver cancer recognition. But its precision 

and sensitivity were not high. Data mining 

investigation of the appearance and controlling part  
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Figure. 1 Entire pipeline of the proposed study 

 

of major genetic factors [20] in HCC was presented 

to expose new possible biomarkers of identification. 

But the accuracy was not efficient and a huge 

quantity of patients was needed to validate the 

model's efficiency. A novel method using machine 

learning algorithms [21] was developed to monitor 

major biomarkers that differentiated HCC cancer 

lesions from the healthy liver. But its accuracy was 

not high for large-scale datasets. 

Differential expression genes (DEGs) [22] related 

to the prognosis and diagnosis of HCC were 

identified by integrated bioinformatics analysis. But 

the sensitivity was less while considering large-scale 

datasets. Wang et al. [23] developed a survival 

prognosis prediction model using random forest 

integrated with DEGs for estimating relevant DEGs 

in HCC. However, accuracy was less because the 

open-source dataset may have missing data and the 

data are all retrospective. 

From the literature, it is observed that the 

previous studies mostly focused on statistical 

analysis and machine learning algorithms for HCC 

detection using different data modalities. But those 

studies infrequently consider patient similarity, 

which also supports physicians to diagnose liver 

cancer efficiently. In contrast with previous studies, 

the IACDGCN model is a new HCC detection system 

that learns the patient similarity from different HCC 

omics data and spatiotemporal features for accurately 

recognizing HCC patients. It can reduce the model 

complexity and training efficiency while using large-

scale gene expression datasets. 

3. Proposed methodology 

This section briefly explains the proposed 

IACDGCN model for HCC detection. An entire 

pipeline of the proposed study is illustrated in Fig. 1. 

It encompasses four modules. The PSN is created by 

an omics dataset based on the SNF. The low-

dimensional features are extracted from the omics 

dataset using DAE [13]. Then, the PSN and feature 

embedding matrix are passed to the proposed 

IACDGCN followed by a softmax classifier for HCC 

detection (i.e., four different stages of liver tumor). 

Thus, the HCC detection model is developed with  
 

Table 1. Lists of notations 

Notations Description 

𝐺 Graph 

𝑁 = |𝒱|  Number of vertices 

ℰ  Edge 

𝐴 Resultant adjacency matrix 

𝑁 × 𝑁 Sparse matrix 

𝑎 and 𝑏 Two vertices 

𝑋  Feature matrix 

𝐹  Feature vector dimension 

𝐿  Number of Conv layers 

𝑍(𝑞+1)  Embedding of the node’s adjacent in 𝐺 

from earlier layer 

𝑋(𝑞) Embedding at 𝑞𝑡ℎ layer for 𝑁 nodes 

𝐴′ Normalized adjacency matrix 

𝑊(𝑞) Feature conversion matrix 

𝜎(∙) Activation function 

𝐵, 𝑘 Number of batches and their dimension 

𝐴𝐵,𝐵 Subgraph 

𝑐 Number of clusters 

𝒱𝑡 Number of nodes in 𝑡𝑡ℎ partition 

𝐴𝑡𝑡 Adjacency matrix having the relations in 

𝐺𝑡 

𝐴̅ Adjacency matrix for graph 𝐺̅ 

𝐴𝑠𝑡 Relations between 𝒱𝑠 and 𝒱𝑡 

∆ Matrix having each off-diagonal block of 

𝐴 

𝑌 Learning tags 

𝐴̅′ Regularized form of 𝐴̅ 

𝑍(𝑄) Absolute embedding matrix 

𝐴̅𝑡𝑡
′  Corresponding diagonal block of 𝐴̅′ 

ℒ𝐴̅′ Loss factor 

𝑧𝑎
(𝐿)

  𝑎𝑡ℎ row of 𝑍(𝑄) with ground truth tag to 

be 𝑦𝑎 

𝜖𝑚𝑎𝑥  Maximum iteration 

𝑋̅  Node representation 

𝑔  Gradient approximators 

𝑀𝑡  Temporal attention map 

𝑀𝑠  Spatial attention map 

𝑀𝑠𝑡  Spatiotemporal attention map 

𝑋(𝑞+1)  Dense GConv function 

ℱ  Residual mapping function 

𝒢  Inter-scale GConv function 

∥  Concatenation 

 

 

better accuracy. 

The notations used in this study are presented in 

Table 1. 

3.1 Inter-scale amalgam cluster DenseGCN model 

Fig. 2 depicts an overview of IACDGCN model 

for HCC detection and diagnosis, which includes the 

cluster DenseGCN, spatiotemporal attention mask,  
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Figure. 2 Overview of proposed IACDGCN model for 

HCC detection and diagnosis 

 

and inter-scale combined temporal convolution units. 

This model can learn spatiotemporal features at 

multiple scales and enhance the low-dimensional 

intermediate features. 

3.1.1. Cluster DenseGCN 

Assume a graph 𝐺 = (𝒱, ℰ, 𝐴)  containing 𝑁 =
|𝒱| vertices and |ℰ| edges such that an edge between 

two vertices 𝑎  and 𝑏  define their relationship. The 

resultant adjacency matrix 𝐴  is an 𝑁 × 𝑁  sparse 

matrix with (𝑎, 𝑏) data equivalent to one when an 

edge between 𝑎 and 𝑏 is exist and zero or else. As 

well, all nodes are related to an 𝐹 -dimensional 

feature vector and 𝑋 ∈ ℝ𝑁×𝐹  indicates the feature 

matrix for 𝑁  nodes. An 𝑄 -layer DenseGCN has 𝐿 

GConv layers and each create embedding for all 

nodes via combining the embedding of the node’s 

adjacent in 𝐺 from earlier layer: 

 

𝑍(𝑞+1) = 𝐴′𝑋(𝑞)𝑊(𝑞), 𝑋(𝑞+1) = 𝜎(𝑍(𝑞+1))  (1) 

 

In Eq. (1), 𝑋(𝑞) ∈ ℝ𝑁×𝐹𝑞 refers to the embedding 

at 𝑞𝑡ℎ  layer for 𝑁  nodes and 𝑋(0) = 𝑋 ; 𝐴′  is the 

normalized adjacency matrix and 𝑊(𝑞) ∈ ℝ𝐹𝑞×𝐹𝑞+1 

denotes the feature conversion matrix that can be 

learned for the downstream processes. Notice that for 

easiness, consider the feature sizes are equal for each 

layer (𝐹1 = ⋯ = 𝐹𝑄 = 𝐹) . The activation function 

𝜎(∙) is assigned to be an element-wise rectified linear 

unit (ReLU). 

In the DenseGCN, a grid search algorithm is 

applied for GCN learning. However, it influences 

from high computation and memory expense when 

exponentially increases the number of GCN layers. 

To avoid this issue, a new DenseGCN training 

algorithm called cluster DenseGCN is developed by 

exploiting graph clustering structure. This can 

enhance the convergence speed and reduce memory 

space of GCN using several clusters as one batch 

based on the mini-batch Stochastic gradient descent 

(SGD). It utilizes 𝐵 ⊆ [𝑁] with dimension 𝑘 = |𝐵| 
to represent a batch of node indices, and all SGD 

steps can determine the gradient prediction as follows 

to execute an update in Eq. (2). 

 

1

|𝐵|
∑ ∇𝑙𝑜𝑠𝑠 (𝑦𝑎 , 𝑧𝑎

(𝑄)
)𝑎∈𝐵     (2) 

 

The cluster DenseGCN performs as follows: at 

every step, it samples a block of nodes that relate to a 

dense subgraph recognized through a graph 

clustering technique, and limits the neighborhood 

exploration in this subgraph. Consider the case that in 

all batches, then the embedding for a group of 𝐵 from 

layer 1 to 𝑄  can be calculated. Because a similar 

subgraph 𝐴𝐵,𝐵 (relations within 𝐵) is utilized for all 

layers of calculation, it can be observed that the 

embedding usage means the amount of edges in this 

𝐵, i.e., ‖𝐴𝐵,𝐵‖
0
. 

So, to improve embedding usage, a batch 𝐵  is 

designed to exploit the within-batch edges, by which 

the efficacy of SGD for training modifies with graph 

clustering algorithms. In cluster DenseGCN, for a 

graph 𝐺 , its nodes are split into 𝑐  clusters: 𝒱 =
[𝒱1, … , 𝒱𝑐], wherein 𝒱𝑡  comprises the nodes in 𝑡𝑡ℎ 

partition. So, 𝑐 subgroups are obtained as: 

 

𝐺 = [𝐺1, … , 𝐺𝑐] = [{𝒱1, ℰ1}, … , {𝒱𝑐, ℰ𝑐}]  (3) 

 

In Eq. (3), all ℰ𝑡  solely comprises the relations 

between nodes in 𝒱𝑡 . Once nodes are updated, 𝐴 is 

split into 𝑐2 submatrices as: 

 

𝐴 = 𝐴̅ + ∆= [
𝐴11 ⋯ 𝐴1𝑐

⋮ ⋱ ⋮
𝐴𝑐1 ⋯ 𝐴𝑐𝑐

]  (4) 

 

Where  

 

𝐴̅ = [
𝐴11 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝐴𝑐𝑐

] , ∆= [
0 ⋯ 𝐴1𝑐

⋮ ⋱ ⋮
𝐴𝑐1 ⋯ 0

]  (5) 

 

In Eqns. (4)-(5), all diagonal blocks 𝐴𝑡𝑡  is a 
|𝒱𝑡| × |𝒱𝑡| adjacency matrix having the relations in 

𝐺𝑡, 𝐴̅ denotes the adjacency matrix for graph 𝐺̅, 𝐴𝑠𝑡 

comprises the relations between 𝒱𝑠  and 𝒱𝑡 , and ∆ 

denotes the matrix having each off-diagonal block of 

𝐴. Also, 𝑋 and learning tags 𝑌 are divided based on 

the partition [𝒱1, … , 𝒱𝑐]  into [𝑋1, … , 𝑋𝑐]  and 
[𝑌1, … , 𝑌𝑐], where 𝑋𝑡 and 𝑌𝑡 contain the features and 

tags for nodes in 𝑉𝑡, correspondingly. The advantage 

of this block-diagonal estimation 𝐺̅  is that the 

objective function of DenseGCN is decomposed into 

multiple 𝐵  (i.e., clusters). If 𝐴̅′  is the regularized 

form of 𝐴̅ , then an absolute embedding matrix is 

defined in Eq. (6): 
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𝑍(𝑄) = 𝐴̅′𝜎(𝐴̅′σ(⋯ 𝜎(𝐴̅′X𝑊(0))𝑊(1)) ⋯ )𝑊(𝑄−1)  

= [
𝐴̅11

′ 𝜎(𝐴̅11
′ σ(⋯ 𝜎(𝐴̅11

′ X1𝑊(0))𝑊(1)) ⋯ )𝑊(𝑄−1)

⋮
𝐴̅𝑐𝑐

′ 𝜎(𝐴̅𝑐𝑐
′ σ(⋯ 𝜎(𝐴̅𝑐𝑐

′ X𝑐𝑊(0))𝑊(1)) ⋯ )𝑊(𝑄−1)
] 

   (6) 

 

This is because the block-diagonal form of 𝐴̅′ 

(observe that 𝐴̅𝑡𝑡
′  denotes the corresponding diagonal 

block of 𝐴̅′). Additionally, the loss factor is split as: 

 

ℒ𝐴̅′ = ∑
|𝒱𝑡|

𝑁𝑡 ℒ𝐴̅𝑡𝑡
′ ,    

 

Where ℒ𝐴̅𝑡𝑡
′ =

1

|𝒱𝑡|
∑ 𝑙𝑜𝑠𝑠 (𝑦𝑎 , 𝑧𝑎

(𝑄)
)𝑎∈𝒱𝑡
  (7) 

 

In Eq. (7), 𝑧𝑎
(𝐿)

 is 𝑎𝑡ℎ  row of 𝑍(𝑄)  with ground 

truth tag to be 𝑦𝑎 defining the last layer projection of 

node 𝑎. After that, the Cluster DenseGCN is trained 

according to the decomposition form in Eqns. (6) and 

(7). At all steps, a cluster 𝒱𝑡 is sampled and the SGD 

is performed to modify according to the gradient of 

ℒ𝐴̅𝑡𝑡
′ , and this only needs the sub-graph 𝐴𝑡𝑡, 𝑋𝑡 , 𝑌𝑡 on 

the present 𝐵 and the models {𝑊(𝑞)}
𝑞=1

𝑄
. 

The execution merely needs forward and 

backward propagation of matrix products (single 

block of (6)), which is simpler to execute compared 

to the neighborhood exploration process in the grid 

search-based learning schemes. The graph clustering 

technique, namely Metis [24] intends to create the 

partitions over 𝒱  in 𝐺  such that within-cluster 

relations are greater than between-cluster relations to 

achieve the grouping pattern of 𝐺 . Conversely, the 

entropy values of maximum clusters are reduced, 

defining that the tag distributions of clusters are 

biased towards a few particular tags. This results in 

high difference across multiple batches and may 

influence the SGD convergence. As a result, a 

stochastic multi-clustering technique is applied to 

integrate between-cluster relations and minimize 

difference across batches. 

Initially, the graph is split into 𝑝  clusters 

𝒱1, … , 𝒱𝑝 with a quite large 𝑝. While creating 𝐵 for  
 

Algorithm 1 Cluster DenseGCN 

Input: Graph 𝐺 , feature matrix 𝑋 , tag 𝑌 , and 

maximum iteration (𝜖𝑚𝑎𝑥) 

Result: Node representation 𝑋̅ 

1. Begin 

2. Split the graph nodes into 𝑐 clusters 

𝒱1, … , 𝒱𝑐 by Metis; 

3. 𝒇𝒐𝒓(𝜖 ≤ 𝜖𝑚𝑎𝑥) 

4.  Select 𝑢 clusters 𝑡1, … , 𝑡𝑢 from 𝒱 

arbitrarily, with no substitution; 

5.  Create a subgraph 𝐺̅ with nodes 

𝒱̅ = [𝒱𝑡1
, … , 𝒱𝑡𝑢

] and relations 𝐴𝒱̅,𝒱̅; 

6.  Calculate 𝑔 ← ∇ℒ𝐴𝒱̅,𝒱̅
 (loss on the 

subgraph 𝐴𝒱̅,𝒱̅); 

7.  Perform Adam update using 

gradient approximators 𝑔; 

8. 𝒆𝒏𝒅 𝒇𝒐𝒓 

9. Return {𝑊𝑞}
𝑞=1

𝑄
 

 

an SGD update, rather than using simply single 

cluster, 𝑢 clusters are arbitrarily chosen, indicated by 

𝑡1, … , 𝑡𝑢 , and comprise their nodes {𝒱𝑡1
∪ … ∪ 𝒱𝑡𝑢

} 

into 𝐵. Moreover, the relations between the selected 

clusters, i.e., {𝐴𝑎𝑏|𝑎, 𝑏 ∈ 𝑡1, … , 𝑡𝑢} are included. In 

this manner, such between-cluster relations are 

reintegrated and the mixtures of clusters create the 

difference across 𝐵  lesser. Therefore, the 

convergence of SGD for GCN training is enhanced 

by considering many clusters as one batch. The 

cluster DenseGCN’s architecture is portrayed in Fig. 

3. The pseudocode for the cluster DenseGCN is 

provided in Algorithm 1. 

3.1.2. Spatiotemporal attention mask  

Typically, the DenseGCN utilizes spatial GConv 

functions to capture features in the first-order 

neighborhood of convolution nodes and combine 

multi-layer GConv functions to increase the node’s 

RFs for concatenating global features regarding HCC. 

Though the dense GConv function decreases the error 

of initial characteristics in the procedure of GConv, 

this dense link provides unwanted features. 

 

 
Figure. 3 Architecture of cluster DenseGCN 
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Since not each omics data is considered to create 

an equal contribution to a detection process, the most 

diverse features to discriminate among complex 

biological interactions occurs in a limited temporal 

omics data. Thus, a spatiotemporal attention mask is 

incorporated in the residual part of dense GConv link 

to enrich the intermediate features. After that, an 

adaptive weight merging scheme is utilized to 

implement an inter-scale merging of the spatial 

features of a GConv concatenation, which decreases 

the redundant features and allows the dense GConv 

function to dynamically capture combined spatial 

traits for effective HCC detection. 

For an intermediate feature map 𝑋 ∈ ℝ𝑁×𝐹  as 

input, such informative features are reutilized in the 

residual GConv function. So, the spatiotemporal 

attention mask is integrated to the residual unit to 

mutually concentrate on meaningful spatiotemporal 

features. 

An 1D mean pooling is used to combine the 

spatial features along a spatial size and passed to the 

neural network (NN) to capture the temporal 

correlation, resulting in a temporal attention map 

𝑀𝑡 ∈ ℝ1×𝐹. As well, the spatial attention map 𝑀𝑠 ∈
ℝ1×𝐹 is created via 1D mean pooling function and 

activation function. Afterward, the product of spatial 

and temporal attention maps is computed to obtain 

the spatiotemporal attention maps 𝑀𝑠𝑡 ∈ ℝ1×𝐹  as 

follows: 

 

𝑀𝑡(𝑋) = 𝜎 (𝑁𝑁(𝑀𝑒𝑎𝑛𝑃𝑜𝑜𝑙(𝐹)))   (8) 

 

𝑀𝑠𝑡(𝑋) = 𝑀𝑡
𝑁⨂𝑀𝑠     (9) 

 

In Eq. (8), 𝜎(∙)  is the sigmoid activation. The 

attention mask 𝑀𝑠𝑡 ∈ ℝ1×𝐹  in Eq. (9) is multiplied 

by the given feature map in a residual way for 

dynamic feature enhancement. Such attention units 

enlarge the node’s RF via pooling processes, 

allowing the system to capture the latent relationships 

among omics data. 

Accordingly, spatiotemporal features of multiple 

scales are merged by including an attention mask on 

the residual unit. The dense GConv function is 

defined in Eq. (10), 

 

𝑋(𝑞+1) =  

𝜎 (∑ 𝐴′𝑋(𝑞)𝑊(𝑞) (𝑀(𝑖)⨂𝒜(𝑖)̃ + 𝑀𝑠𝑡⨂𝑋𝑞)𝑖∈𝑢 ) (10) 

 

In the cluster DenseGCN, such dense relations 

support to reutilize intermediate features among 

various layers to efficiently discover the internal 

dependencies among multi-omics data in 𝐺 . After 

that, Eq. (10) is converted to 

 

𝑋(𝑞+1) = ℱ(𝒢(𝐴′, 𝑋(𝑞), 𝑊(𝑞)), 𝑋𝑞) = 

ℱ(𝒢(𝐴′, 𝑋(𝑞), 𝑊(𝑞)), … , 𝒢(𝐴′, 𝑋(0), 𝑊(0)), 𝑋0)  (11) 

 

In Eq. (11), ℱ  denotes the residual mapping 

function, and 𝒢 is the inter-scale GConv function. 

3.1.3. Inter-scale combined temporal convolutional 

unit 

For a temporal graph, the temporal convolution 

unit extracts the temporal characteristics of the multi-

omics data via 1D convolution. The temporal 

convolution kernel dimension is fixed, and the 

temporal characteristics are more common because 

of the large local temporal neighborhood. It is 

complex to explore for each mixture of time 

convolution kernels of multiple dimensions. 

The omics dataset might need many temporal RFs 

that controls the generalizability of the temporal 

convolution unit. To combat these challenges, an 

inter-scale combined temporal convolution scheme is 

developed. Rather than a 9 × 1  large convolution 

kernel utilized by the earlier temporal convolution 

unit, three large, medium, and small convolution 

kernels of 9 × 1 , 5 × 1 , and 3 × 1  are applied to 

collect temporal characteristics at multiple scales.  

Those are merged in the kernel size, and 

dynamically choose the temporal characteristics at 

multiple scales based on the layer weight; thus, the 

system can adaptively merge the ideal temporal RF 

value. The inter-scale combined temporal 

convolution function is defined by 

 

𝑋(𝑞+1) = 𝐴′𝑊(𝑞) (𝑋𝑡
(𝑞)

(𝑘𝑡 = 9) ‖𝑋𝑡
(𝑞)

(𝑘𝑡 =

                                  5) ‖𝑋𝑡
(𝑞)

(𝑘𝑡 = 3))             (12) 

 

In Eq. (12), ∥  denotes the concatenation, and 

𝑊(𝑞) can alter the role of temporal characteristics at 

multiple scales. Thus, this IACDGCN will 

dynamically capture distinct temporal characteristics, 

and adaptively fine-tune the temporal convolution RF 

to particular extent. After learning spatiotemporal 

features, the obtained features are fed to the softmax 

classifier to find the final class probability and detect 

HCC patients precisely. 

4. Experimental result 

This section presents the IACDGCN model’s 

effectiveness compared to the existing models (such 

as pDenseGCN [13], DNN [15], ANN [16], MTnet 

[17], and random forest [23]) by executing them in  
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Table 2. Parameter settings for existing and proposed 

IACDGCN model 

Model Parameters Range 

Random 

forest [23] 

Number of trees in 

the forest 

40 

Maximum tree depth 6 

ANN [16] 

Number of hidden 

layer 

1 

Number of hidden 

units 

62 

Loss function Mean squared 

error  

Activation function ReLU 

Optimizer Adam 

Training rate 0.002 

DNN [15] 

Number of hidden 

layers 

3 

Number of neurons at 

𝑘𝑡ℎ hidden layer 

32 

Number of neurons at 

output layer 

4 

Learning rate 0.001 

Activation function ReLU 

Optimizer Adam 

Loss function Mean squared 

error 

MTnet [17] 

Training rate 0.001 

Batch size 64 

Loss function Cross-entropy 

pDenseGCN 

[13] 

Learning rate 0.01 

Batch size 64 

Loss function Mean squared 

error 

Proposed 

IACDGCN 

Training rate 0.01 

Dropout rate 15% 

Weight decay 0 

Number of epochs 600 

Number of hidden 

units 

256 

Number of partitions 100 

Number of clusters 

per batch 

2 

SGD with Nesterov 

momentum 

0.9 

Loss Cross-entropy 

 

 

MATLAB 2019b. 

To measure the performance of the proposed 

IACDGCN model, the considered existing models 

are also implemented and tested on the TCGA-LIHC 

omics dataset. Table 2 lists parameter settings for the 

IACDGCN and the existing models for HCC 

detection. 

In this experiment, the LIHC omics datasets are 

collected from TCGA open source [25]. The TCGA-

assembler is utilized to acquire DNA methylation,  
 

Table 3. Statistics of different omics datasets 

Omics category No. of samples No. of features 

DNA methylation 429 20421 

RNA-Seq 424 20530 

CNV 760 24924 

 

 
Table 4. Confusion matrix results of IACDGCN model 

for testing 

Classified/Actual 
Stage 

i 

Stage 

ii 

Stage 

iii 

Stage 

iv 

Stage i 61 0 0 0 

Stage ii 0 32 2 0 

Stage iii 1 1 45 0 

Stage iv 1 0 0 2 

 

 

RNA-Seq, and CNV data of LIHC in different stages: 

(a) stage i, (b) stage ii, (c) stage iii, and (d) stage iv. 

Table 3 lists the statistics of these datasets. The 

collected datasets are pre-processed to remove 

missing values using the data imputation. The 

residual samples are normalized and a total of 364 

samples are considered from the pre-processed 

dataset, which is divided into learning and test sets. 

The learning set comprises 219 samples, of which 92 

are stage i, 56 are stage ii, 64 are stage iii, and 7 are 

stage iv samples. The test set covers 145 samples, of 

which 63 are stage i, 33 are stage ii, 47 are stage iii, 

and 2 are stage iv samples. 

Table 4 presents the confusion matrix results of 

IACDGCN model on the TCGA-LIHC omics dataset 

for classifying four different stages of HCC. 

With the confusion matrix results in Table 3, the 

below metrics are calculated to measure the 

performance of HCC diagnosis models. 

 

• Accuracy: It is the percentage of accurate 

classifications. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝑇𝑁)

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑃)+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐹𝑁)+𝑇𝑃+𝑇𝑁
          (13) 

 

For example of stage i class, in Eq. (13), TP is the 

quantity of stage i instances categorized as 

themselves, TN is the quantity of other stage 

instances accurately categorized as themselves, FP is 

the quantity of stage i instances inaccurately 

categorized as other stages, and FN is the quantity of 

other stage instances inaccurately categorized as 

stage i. 

• Precision: It is calculated as: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
               (14) 
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Table 5. Comparison analysis of proposed and existing 

HCC diagnosis models on TCGA-LIHC omics dataset 

Models Precision 

(%) 

Recall 

(%) 

F1-

score 

(%) 

Accuracy 

(%) 

Random 

forest 

79.64 74.39 76.97 79.22 

ANN 83.40 77.15 80.15 82.97 

DNN 86.81 80.52 83.55 86.41 

MTnet 89.25 82.77 85.89 89.11 

pDenseGCN 92.89 85.53 89.06 91.03 

IACDGCN 97.38 89.13 93.08 96.60 

 

 
Figure 4. Performance comparison of proposed and 

existing HCC diagnosis models on TCGA-LIHC omics 

dataset 

 

 

• Recall: It is determined by 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
               (15) 

 

• F1-score: It is calculated as: 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
             (16) 

 

Table 5 demonstrates the results of proposed and 

existing models tested on the TCGA-LIHC omics 

dataset for HCC diagnosis. 

As illustrated in Fig. 4, it is noticed that 

IACDGCN model on the TCGA-LIHC omics dataset 

achieved an improved efficiency in contrast with the 

other models in terms of each metric. The IACDGCN 

model attains 96.6% accuracy, which is increased by 

21.94%, 16.43%, 11.79%, 8.41%, and 6.12% 

compared to the random forest, ANN, DNN, MTnet, 

and pDenseGCN models, respectively. In terms of 

precision, the IACDGCN is 22.28%, 16.76%, 

12.18%, 9.11%, and 4.83% superior to the random 

forest, ANN, DNN, MTnet, and pDenseGCN models, 

respectively. The IACDGCN reaches recall, up to 

19.81%, 15.53%, 10.69%, 7.68%, and 4.21% better 

than the random forest, ANN, DNN, MTnet, and 

pDenseGCN models, respectively. Also, the f1-score 

of IACDGCN is improved by 20.93%, 16.13%, 

11.41%, 8.37%, and 4.51% compared to the random 

forest, ANN, DNN, MTnet, and pDenseGCN models, 

respectively. As a consequence, it demonstrates that 

the proposed IACDGCN model is highly beneficial 

for HCC diagnosis by adopting PSN and cluster 

DenseGCN with attention strategy. 

5. Conclusion 

In this paper, the IACDGCN model was 

developed for HCC detection and diagnosis. Initially, 

the PSN and latent feature embedding representation 

of multi-omics data were created. Those were given 

to the IACDGCN model to enhance intermediary 

traits and learn spatiotemporal features from multi-

omics data in the graph. Then, the learned features 

were classified by the softmax classifier for detecting 

different HCC stages. At last, extensive experiments 

proved that the IACDGCN model on the TCGA-

LIHC omics dataset has an accuracy of 96.6%, 

whereas the existing models such as random forest, 

ANN, DNN, MTnet and pDenseNetGCN on the 

TCGA-LIHC omics dataset have an accuracy of 

79.22%, 82.97%, 86.41%, 89.11% and 91.03%, 

respectively for HCC diagnosis. Similarly, the 

IACDGCN model achieves 97.38% precision, 

89.13% recall and 93.08% f-measure in contrast with 

the considered existing models. Thus, it is concluded 

that the proposed IACDGCN model outperformed 

other classification models for HCC diagnosis. 
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