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Abstract: Traceability link recovery is a crucial task in software engineering that ensures the development of 

dependable and credible software systems. Traceability links between requirements and source code support various 

activities in the software development process, including change management and software maintenance. These links 

can be established manually or automatically. Manual trace retrieval is a time-consuming task. Automatic trace 

retrieval can be performed via various tools such as information retrieval or machine learning methods. Some 

automatic tools couldn't retrieve the links between requirements and source code. Meanwhile, a big concern associated 

with automated trace retrieval is the low precision problem primarily caused by the term mismatches across documents 

to be traced. This study proposes an approach that addresses the low precision problem caused by the term mismatch 

problem between requirements and source code to obtain the greatest improvements in trace retrieval accuracy. The 

proposed approach utilizes a variational autoencoder (VAE), an unsupervised deep-learning model in the automated 

trace retrieval process.  We have conducted a series of experiments on three datasets: eTour, SMOS, and eANCI to 

evaluate our approach against existing approaches. In order to validate the effectiveness of our proposed approach, we 

compared it to three previous studies that addressed the same problem and utilized the same datasets: the first study 

used unsupervised machine learning based on clustering, the second study used active learning, and the third study 

used a classification machine learning. The results show that our proposed approach improves the trace retrieval 

precision in the automated trace retrieval process. 

Keywords: Requirements traceability, Term mismatch, Trace retrieval, Deep learning, Variational autoencoder. 

 

 

1. Introduction 

Traceability link recovery (TLR) is a crucial task 

in software engineering that involves restoring links 

between source artifacts (such as requirement 

documents) and target artifacts (such as source code) 

within the same project [1]. Traceability is a critical 

aspect of software development [2] and maintenance, 

as it supports various activities, including program 

comprehension, compliance verification, change 

impact analysis, and regression analysis of test cases 

[3]. 

Traceability links can be established manually or 

automatically. However, manual retrieval of 

traceability links can be error-prone [4] and time-

consuming. Therefore, automatic retrieval techniques 

that utilize tools such as information retrieval [5], 

ontology, machine learning [6], and deep learning [7] 

are often employed. Deep learning approaches can be 

classified into two main categories: supervised 

learning and unsupervised learning [8]. Deep 

learning has exhibited impressive performance across 

multiple domains, with particular success in tasks 

related to natural language processing (NLP) [9]. 

One major issue in trace retrieval research is the 

problem of low precision. Precision refers to the 

proportion of accurate traces among all the retrieved 

traces. When precision is low, it means that numerous 

false traces are being incorrectly retrieved, requiring 

users to manually evaluate the retrieved links to 

identify the correct traces. This highlights the need to 

focus on improving precision. Consequently, several 

researchers have explored various approaches to 
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enhance precision [6, 10]. However, these attempts 

have only yielded marginal improvements. The 

primary cause of this problem lies in term 

mismatches across the documents to be traced. 

A term mismatch problem can arise between 

source and target artifacts when the language used in 

the target document neither matches the language of 

the source document nor matches project-level 

synonyms defined in a project glossary [11]. The 

problem is that datasets have a limited number of 

labels. These labels are provided for testing only. We 

formulated the problem by choosing an intelligent 

solution based on unsupervised deep learning using a 

variational autoencoder. The suggestion for 

addressing this problem is to choose an intelligent 

solution based on unsupervised deep learning to find 

probabilities among data points and effectively group 

those that are similar, ultimately enhancing trace 

retrieval precision. Therefore, the reason for 

choosing the proposed approach is to enhance trace 

retrieval precision, and this solution is suitable for 

data that has few labels or unlabelled data. 

In this study, to address the term mismatch 

problem in automated trace retrieval, we follow the 

proposed research direction toward achieving 

automated trace retrieval by developing an intelligent 

tracing solution namely unsupervised deep learning 

based on VAE. 

The variational autoencoder (VAE) is an 

unsupervised deep learning model designed to handle 

unlabelled datasets or a few labelled datasets, 

meaning datasets that do not have direct class labels 

associated with the data instances [12]. The VAE is a 

popular and effective model applied to text modelling 

for generating various sentences [13] and learning 

representations of high-dimensional data [14]. The 

primary advantage of the VAE is for learning smooth 

potential state representations of input data. VAE, 

known as variational autoencoder, is a latent variable 

model based on probability. The observed vector x 

exhibits a correlation with the low-dimensional latent 

variable z through a conditional distribution [15]. 

VAE is widely used in many natural language 

processing (NLP) tasks, such as text modelling [16]. 
VAE has two components encoder and decoder. VAE 

simulates the probability of x as shown in Eq. (1). 

 

𝑃θ (x) =∫  𝑃θ (x|z) 𝑃λ (𝑧)𝑑𝑧|                        (1) 

 

In this context, the posterior probability of x 

given z, denoted as 𝑃θ (x|z), is represented by a neural 

network with parameters θ. Similarly, the prior 

probability of the latent variables, denoted as pλ(z), 

is modelled by neural networks with parameters λ. 

These neural networks are referred to as decoders. 

As proposed, the encoder and decoder are 

essential components of the VAE and operate 

collaboratively to learn a compressed representation 

(i.e., a latent space) of the input (service descriptions). 

To evaluate the reconstruction performance and 

ensure that the latent space captures meaningful 

features of inputs. The third essential part of the VAE 

is the cost function, which is employed [17]. Deep 

recurrent networks such as ANN and LSTM are often 

utilised to implement the encoder and decoder in text 

modelling [18]. 

This paper utilizes four commonly utilized 

metrics: precision, recall, F-score, and accuracy, to 

assess the efficacy of the newly suggested method. 

The evaluation of requirement tracing tools' 

effectiveness is based on precision and recall [19]. 

Precision refers to the proportion of accurately 

retrieved candidate links expressed as a percentage as 

shown in Eq. (2), It measures the relevance of 

retrieved documents [20]. Recall refers to the 

correctly identified links [21] percentage as shown in 

Eq. (3). The F-score utilizes to provide a balance 

between precision and recall. It is the harmonic mean 

of precision and recall [22] percentage as shown in 

Eq. (4). Lastly, accuracy measures the percentage of 

correctly classified normal and the outlier values 

among the total numbers of the classifications 

percentage as shown in Eq. (5). Both precision and 

recall are essential. The F-Score is usually preferred 

for evaluating trace results where recall is considered 

more significant than precision [23]. 

 

Accuracy = (TP + TN) / (TP + FP + FN + TN)  (2) 

 

Precision = TP/ (TP + FP)   (3) 

 

Recall = TP/ (TP + FN)    (4) 

 

F-Score =2*(precision*recall)/(precision + recall) 

(5) 

 

The study is structured as follows: Section 2 

presents related work in trace retrieval; Section 3 

outlines the proposed approach; Section 4 discusses 

the obtained results; Section 5 evaluates the results; 

and section 6 concludes with a discussion of future 

work. 

2. Related studies 

This section reviews some methods used to solve 

the term mismatch problem in automated trace 

retrieval between requirements and source code. 
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In [6], the authors proposed an approach that 

addresses the term mismatch problem between 

requirements and source code to obtain the most 

significant improvements in trace retrieval accuracy. 

The proposed approach used unsupervised machine 

learning based on the clustering in the automated 

trace retrieval process and performed an 

experimental evaluation against previous 

benchmarks. Unfortunately, this proposed approach 

has trouble identifying some links between 

requirements and source code that are very similar to 

those found in standard groups, which might lead the 

items to the wrong cluster. 

The authors suggested a framework: BERT  

(T-BERT) for establishing trace links between 

requirements and source code. They employed this 

framework to restore the link between issues and 

commits in open-source projects. The evaluation of 

three BERT architectures revealed that the single-

BERT architecture produced the most precise links, 

while the Siamese-BERT architecture delivered 

similar outcomes with notably lesser execution time. 

By gaining knowledge and transferring it, all three 

models in the framework surpassed classical IR trace 

models in terms of accuracy and efficiency. The 

results show that the single-BERT architecture 

generated the most accurate links, while the Siamese-

BERT architecture produced comparable results with 

significantly less execution time. Unfortunately, their 

method is a conventional way of leveraging OSS 

projects for traceability which may affect the true 

links may be missed. Additionally, the authors didn't 

use precision, which is considered an essential 

measure for recovery links between requirements and 

source code [24]. 

To overcome the limitation of IR/ML techniques 

and adopt a probabilistic perspective towards the 

traceability problem, the authors in [25] designed and 

implemented a HierarchiCal PrObabilistic model for 

software traceability (COMET) that can infer 

candidate trace links. This model used a hierarchical 

Bayesian network to model the presence of 

traceability links. The authors demonstrated that 

COMET outperforms IR/ML techniques and has 

considerable potential for industrial applications. 

They intend to extend the application of COMET to 

new information sources, customize its analysis to 

deduce security-related links, and deploy the 

COMET plugin in collaboration with industry 

partners to gather feedback. The drawback of their 

model is that suitable for small systems, so it's 

difficult to generalize it to other systems to infer a set 

of candidate trace links [25].  

Guo and his co-authors [11] examined and 

compared three methods for enhancing queries to 

address the term mismatch problem and improve the 

quality of trace links between regulatory codes and 

requirements. The first technique involves training a 

classifier to replace the original query with terms 

learned from a training set of trace links between 

regulations and requirements. The second method 

replaced the original query with terms obtained 

through web mining, while the third uses a domain 

ontology to expand query terms. The ontology 

created manually, using an approach that leverages 

existing traceability knowledge. To evaluate the 

effectiveness of these techniques, they applied them 

to trace security regulations from the USA 

government's health insurance privacy and portability 

act (HIPAA) against ten healthcare-related 

requirements specifications. Their results show that 

the classification-based approach yielded the best 

results, but improvements were also observed with 

both the classification and ontology-based solutions. 

On the negative side, the web-mining technique 

showed improvements only in some queries. Web 

mining and ontology techniques achieved lower 

results which means those techniques didn't have the 

ability to retrieve all the correct links between 

requirements and source code.  

3. The proposed approach 

In this section, the authors divided the task of the 

proposed approach using the VAE model to improve 

the recovery of links between requirements and 

source code into four main phases. Fig. 1 illustrates 

the four phases of the proposed trace retrieval 

approach based on VAE. The four phases are as 

follows:  

Phase one is choosing suitable. Phase two 

includes seven steps (feature extraction, translation, 

preprocessing, lemmatization, query expansion, 

TFIDF, and SMOTE). Phase three contains four steps 

(encoder, decoder, train VAE, and dense NN layer). 

Phase four is the evaluation method of the retrieved 

links between requirements and source code as 

shown in Fig. 1. 

Phase 1: Choosing suitable datasets 

Research in the area of automated requirements 

traceability relies on the availability of different types 

of datasets.  Obtaining such datasets has been one of 

the reported barriers by researchers in the software 

engineering domain [26]. This phase introduces the 

three datasets that are used in this study to evaluate 

the automated trace retrieval between source artifact 

(requirements) and target artifact (source code).  
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Figure. 1 Proposed trace retrieval approach using VAE 

 
Table 1. Characteristics of the Three Datasets [26, 27, 28, 

29, 30] 

Name  

 

Description Source 

Artifact  

Target 

Artifact 

Correct 

Links 

eTour “Is an 

electronic 

tourist 

guide 

developed 

by 

students” 

Use 

Cases 

(58) 

Source 

Code 

Classes 

(116) 

336 

SMOS “Is an 

application 

that is used 

to monitor 

high school 

students 

(e.g., 

absence, 

grades).” 

Use 

Cases 

(67) 

Source 

Code 

Classes 

(100) 

1045 

eANCI “A system 

providing 

support to 

manage 

Italian 

municipalit

ies” 

Use 

Cases 

(140) 

Source 

Code 

Classes 

(55) 

567 

 

Table 1 briefly defines the characteristics of the 

datasets used in the study approach. These datasets 

are available through http://www.CoEST.org. 

The reason for choosing these datasets is because 

they are publicly available, meaning that anyone can 

access them and use them for research or analysis this 

is important because it allows for greater 

transparency. Also, these datasets are used to 

evaluate the automated trace retrieval approach 

between requirements and source code. The three 

datasets are compatible with different tools such as 

Python. 

Phase 2: Preparing the datasets. 

The authors divided this phase into seven steps as 

follows: 

Step 1, Feature extraction. In order to establish 

traceability links between the source artifact (written 

in natural language) and the target artifact (written in 

the programming language Java) was necessary to 

extract key features from each. The source artifact 

contained various types of information, but not all of 

it was relevant to the study's goal. Thus, the authors 

focused on extracting the most significant features 

from the source code, which included the class name, 

class attributes, class comments, method comments, 

method name, method parameters, and method 

return. They also extracted two primary features from 

the requirements: title and description. 

Step 2, Translation. Requirements and source code 

artifact contained some Italian text, including words 

and sentences within certain lines. As a result, the 

authors needed to translate the content of both 

artifacts into English. To accomplish this, authors 

utilized a sophisticated translation engine to translate 

the documents into English, especially if they were 

initially not written in English. Specifically, they 

employed ChatGPT. "ChatGPT is a public tool 

developed by OpenAI that is based on the GPT 

language model technology"[31]. “ChatGPT is a 

single model handling various NLP tasks and 

covering different languages, which can be 

considered a unified multilingual machine translation 

model.” [32]. 

Step 3, Applying other pre-processing steps, such as 

camel_case_split, under_score_split, converting 

from upper case to lower case, removing 

punctuations, removing stop words, removing 

numbers, and removing single characters. 

Step 4, Lemmatization. Lemmatization is a 

fundamental NLP task that includes transforming a 

word in its inflected form to its base or lemma form. 

It is a technique employed in a variety of NLP tasks. 

The primary objective of lemmatization is to 

standardize words to their canonical forms, which can 

enhance the accuracy and effectiveness of subsequent 

NLP tasks [33]. 
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Figure. 2 VAE Architecture [41] 

 

Step 5, Query expansion (QE). Query expansion is a 

method of finding suitable terms for the 

reformulation of queries to resolve the short query 

and word mismatch problem and enhance the 

performance of the retrieving the information [34]. 
WordNet is a lexical database for the English 

language that is commonly used in natural language 

processing and computational linguistics. It is a 

large-scale, electronic database that contains 

information about words and their semantic 

relationships, such as synonyms, antonyms, 

hypernyms (words that are more general), hyponyms 

(words that are more specific), and meronyms (words 

that are part of the whole) [35]. In this step, the 

authors employed QE using WordNet to augment 

queries with related words, with the goal of 

increasing the number of retrieved documents and 

enhancing recall performance. To achieve this, the 

researchers extracted all words within each query and 

automatically selected synonyms for each individual 

word. 

Step 6, Encoding (TFIDF). There are several 

techniques available to transform the text into 

numerical vectors, such as TFIDF encoding, 

Dec2Vec, Word2Vec, and bag of words (BOW) [36]. 

In this study, authors opted to use TFIDF encoding as 

it was found to produce better results compared to 

other methods that they experimented with in their 

previous study. 

Step 7, SMOTE method. The authors previously 

acknowledged certain problems associated with three 

datasets (eTour, SMOS, and eANCI) in their research 

(See ref. [6]). Specifically, all three datasets are 

imbalanced, and to address this issue, the authors 

proposed oversampling algorithm for deep learning 

models called SMOTE, which based on the widely 

used SMOTE method. The authors applied this 

method before training the VAE model. 

Phase 3: Build the variational autoencoder (VAE) 

model 

Variational autoencoders (VAEs) are generative 

models that learn to simulate the latent representation 

of data [37]. It is used to improve the quality of the 

generated outputs [38]. Variational autoencoders 

(VAEs) [39] consist of two deep neural networks: an 

encoder network and a decoder network [40]. Fig. 2 

illustrates the architecture of the VAE mode. 

This phase consists of four steps as follows: 

Step 1. Creating the encoder model. Given an input 

data point x, the VAE aims to encode it into a low-

dimensional latent space representation z. These are 

achieved through an encoder network that 

parameterizes a distribution qφ(z|x), where φ 

represents the encoder network's parameters [40]. 

Step 2. Creating the decoder model. The latent 

variable z is then passed through a decoder network, 

parameterized by θ, which aims to reconstruct the 

original input x. The decoder outputs the parameters 

of the conditional distribution 𝑷𝛉 (x|z), which 

represents the reconstructed data distribution [42]. 

The process of encoding involves the acquisition 

of latent variables from the input, and the decoding 

process generates output by utilizing samples of these 

latent variables with an adequate amount of training 

data both the encoder and the decoder can be trained 

simultaneously by minimizing the reconstruction loss 

and the Kullback-Leibler (KL) divergence between 

the distributions of the latent variables and 

independent normal distributions [40]. 

Generally, the encoder network turns the input 

samples (x) into two parameters in a latent space: 

(z_mean and z_log_sigma). Then, it randomly 

samples similar points (z) from the latent normal 

distribution that is assumed to generate data via  

z = z_mean + exp(z_log_sigma) * epsilon, where 

epsilon is a random normal tensor. Finally, the 

decoder network maps these latent space points back 

to the original input data. 

Custom loss function: The loss function consists 

of two components. The first component is the 

reconstruction error Eqφ(z|x) [log P θ (x|z)]. The 

second component is the relative entropy, which 

facilitates learning of the model distribution qφ(z|x) 

to approximate the actual prior probability pλ(z), 

specifically a normal distribution. Before training the 

variational autoencoder model, the final step is to 

create a custom loss function and compile the model. 

Then, the loss function will compare inputs and 

outputs and try to minimize the difference between 

them [43]. 

 



Received:  July 26, 2023.     Revised: September 3, 2023.                                                                                                  46 

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024           DOI: 10.22266/ijies2024.0229.05 

 

 
Figure. 3 Creating the encoder model (structural diagram) 

 

 

Step 3: Training the VAE model. The overall 

objective is to minimize the sum of the reconstruction 

loss and the regularization loss. These are done by 

optimizing the parameters of both the encoder (φ) 

and the decoder (θ) networks using techniques such 

as stochastic gradient descent (SGD) or its variants 

[44]. 

The authors specified dimensions for input/output 

and latent space layers. They determined the 

original_dim is equal to 7200, and the latent space  

 

 
Figure. 4 Creating the decoder model (structural diagram) 

 

dimension is equal to 2, as shown in Fig. 3. The 

authors trained the VAE model for 150 epochs with a 

batch size of 16 in the experiments as follow: 

history = vae.fit(x_train, x_train, epochs=150, batch

_size=16, validation_data=(x_val, x_val)) 

Fig. 4 shows the processes of creating a decoder 

model. It is an essential component of VAE. It's 

responsible for mapping an encoded latent space 

representation of the input data back to its original 

form. The figure illustrates the steps involved in 

constructing the decoder model architecture. 

Step 4. Dense NN layer 

In this step, a dense layer in a neural network is 

characterized by its fully interconnected nature with 

the preceding layer, where each neuron in the layer is 

connected to every neuron of its preceding layer. This 

layer is widely employed in artificial neural networks 

and is considered as one of the most commonly used 

layers [45]. To determine the most likely answer to a 

classification problem, the Sigmoid activation  
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Table 2. Results of the proposed trace retrieval approach 

using VAE 

Datasets  Precision  Recall F-Score Accuracy  

eTour  0.93 0.99 0.96 0.99 

SMOS 0.91 0.99 0.95 0.98 

eANCI 0.95 0.91 0.93 0.97 

 

 
Figure. 5 The Results of the proposed trace retrieval 

approach using VAE 

 

function is employed at the output layer [46] and 

maps the input to the range between (0 and 1).          

clf = Dense (1, activation='sigmoid') (vae. Layers [1]. 

output [2]) 

Phase 4: Evaluation   

In this phase, the evaluation method of the 

retrieved links between requirements and source code 

using VAE is the performance of the four measures 

(i.e., precision, recall, F-score, and accuracy). 

4. Results 

Before presenting the results, we will evaluate the 

success of the strategy provided in this study. We 

have used Python Google colab as a cloud-based 

platform that allows users to write and execute 

Python code in a web browser without requiring any 

setup. Various types of Python packages are used, 

such as the scikit-learn package, TensorFlow, and 

Keras platform. We set the hyperparameters to train 

the VAE model. First, we specified the original_dim 

= 7200 and the latent space dimension= 2, the 

epochs= 150, and batch_size=16. The results of those 

hyperparameters are as follows: the total params: 

932,767, trainable params: 932,767, and non-

trainable params: 0. Also, we placed the epochs=20 

and batch_size=10 to fit the VAE model to get 

optimal parameters for the encoder and decoder 

networks. The encoder encodes the input data into a 

probabilistic distribution in a lower-dimensional 

latent space. The mean (μ) and log-variance (log 2) 

parameters define this distribution. Latent variables 

are sampled through reparameterization, and the 

original data is then decoded using a generator 

network. The regularisation term (KL divergence) in 

the VAE's loss function maintains the latent space's 

resemblance to a typical Gaussian distribution. These 

elements are optimised during training, allowing the 

VAE to produce unique data by sampling from the 

latent space. Second, we compute the confusion 

matrix: precision, recall, F-score and accuracy using 

" sklearn.metrics" to get the final results. 

The results of this study are divided into two parts 

as follows:  

First: Results of applying the proposed trace 

Retrieval Approach based on VAE described in 

Section 3, which consists of four phases, as shown in 

Fig. 1. Second: comparing the proposed trace 

retrieval approach results with three studies (i.e., 

studies [6] and [47], and [47]). Study ([6]) utilized 

unsupervised machine learning-based clustering, 

Study ([47]) utilized active learning, and study ([48]) 

utilized supervised machine learning. 

First: Results of the proposed trace retrieval 

approach based VAE. 

As mentioned in section 3, the authors applied the 

Variational autoencoder to the three datasets (i.e. 

eTour, SMOS, and eANCI) described in Phase 1 of 

the proposed trace retrieval approach. The results of 

the proposed trace retrieval approach based on VAE 

are presented here, which include four measures: 

Precision, recall, F-Score, and accuracy, as shown in 

(Table 2) and Fig. 5. The proposed approach achieved 

the highest results using the four measures of the 

confusion matrix with the three datasets, as shown in 

(Table 2) and Fig. 5. 

Table 2 and Fig. 5 indicate that the VAE achieves 

the highest results across three datasets, with some 

variation between the four measures. For instance, 

the highest precision is achieved with the eANCI 

dataset, the highest recall across eTour and SMOS 

datasets, and the highest F-score and accuracy with 

the eTour dataset. 

Based on Table 2, these findings suggest that the 

VAE-based approach is effective across different 

datasets and has the ability to perform well in 

multiple evaluation measures. However, the variation 

between the four measures indicates that the 

approach may excel in certain areas over others 

depending on the dataset used. This highlights the 

importance of considering the unique characteristics 

of each dataset when evaluating the performance of 

the approach. Overall, the results demonstrate the 

potential of the VAE for improving precision, recall, 

F-score, and accuracy. 
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Table 3. Results comparison: VAE and Clustering: (a) 

eTour, (b) SMOS, and (c) eANCI 

(a) 

Measure VAE Clustering 

Precision 0.93 0.93 

Recall 0.99 0.97 

F-Score 0.96 0.94 

Accuracy 0.99 0.91 

(b) 

Measure VAE Clustering 

Precision 0.91 0.73 

Recall 0.99 0.76 

F-Score 0.95 0.74 

Accuracy 0.98 0.66 

(c) 

Measure VAE Clustering 

Precision 0.95 0.64 

Recall 0.91 0.77 

F-Score 0.93 0.70 

Accuracy 0.97 0.60 

 

Second: We compared the proposed trace retrieval 

approach results with three previous studies (i.e., 

studies [6] and [47], and [48]) and using three 

Parameters of comparison (i.e., precision, recall, and 

F-score) and these parameters are used with our 

proposed approach also were have used in three 

previous studies. Our proposed approach and three 

previous studies used the same datasets (i.e., eTour, 

SOMS, and eANCI). 

Study ([6]) utilized unsupervised machine learning 

based on clustering to address the same problem and 

used the same datasets for solving low precision 

between requirements and source code. The authors 

applied four clustering algorithms (K-means++, 

GMM, Hierarchical, and DBSCAN) to three datasets 

(eTour, SMOS, and eANCI). We have chosen the 

highest results from this study to compare with our 

proposed approach. Table 3 (a) to (c) presents a 

comparison between the proposed trace retrieval 

approach based on VAE and unsupervised machine 

learning based on clustering using the K-means++ 

algorithm. Four metrics, namely precision, recall, F-

score, and accuracy, are used to compare the 

performance of these approaches. 

Tables 3 (a) to 3(c) and Fig. 6 (a) to (c) depict that 

the proposed trace retrieval-based approach, based on 

VAE, achieved the same precision results as the study 

([6]) in the eTour dataset. In contrast, VAE achieved 

higher results in recall and F-score in the eTour 

dataset compared to the study ([6]). In the SMOS and 

eANCI datasets, the proposed trace retrieval 

approach based on VAE achieves the highest results 

in precision, recall, F-score, and accuracy compared 

to the study ([6]). 

 

 
(a) 

 
(b) 

 
(c) 

Figure. 6 Result comparison: VAE and Clustering: (a) 

eTour, (b) SMOS, and (c) eANCI 

 

Table 4 (a to c) presents a comparison between 

the two studies (Study [47] and Study [48]) and the 

proposed approach based on VAE. 

In (Study [47]), the authors proposed an approach 

for trace link recovery (TLR) based on active learning 

(AL), referred to as the AL-based approach to 

retrieve links between requirements and source code. 

We have chosen the highest results from this study to 

compare with our proposed approach. In (Study [48]), 
the authors introduced an approach for traceability 

link recovery, which focuses on measuring the 

similarity between requirements and source code by 

exploring their respective features. To achieve this,  
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Table 4. Results comparison: VAE and two Studies: (a) 

eTour, (b) SMOS, and (c) eANCI 

(a) 

Measure VAE Study [47] Study [48]  

Precision  0.93 0.68 0.66 

Recall  0.99 0.34 0.59 

F-Score 0.96 0.46 0.61 

(b) 

Measure VAE Study [47] Study [48]  

Precision  0.91 0.57 0.75 

Recall  0.99 0.29 0.33 

F-Score 0.95 0.39 0.51 

(c) 

Measure VAE Study [47] Study [48]  

Precision 0.95 0.73 0.62 

Recall 0.91 0.44 0.54 

F-Score 0.93 0.55 0.58 

 

they combined machine learning and logical 

reasoning models. We have chosen the highest results 

from this study to compare with our proposed 

approach.  

The following Tables 4 (a) to 4(c) present the 

results of the comparison between our proposed 

approach using VAE and (Study [47], and Study 

[48]) using three parameters (i.e., precision, recall, 

and F-score). 

Tables 4 (a) to (c) and Fig. 7 (a) to (c) present the 

results of the evaluation conducted on the proposed 

trace retrieval approach, which is based on the 

variational autoencoder (VAE). The evaluation was 

performed using three datasets, and the primary focus 

of this study was the precision measure. However, the 

proposed approach also demonstrated high 

performance in terms of recall and F-score. 

Comparing the results with two other studies 

referenced (Study [47] utilizing active learning 

techniques) and (Study [48]) combining machine 

learning and logical reasoning models, it is evident 

that the proposed trace retrieval approach achieved 

superior results across all three evaluation measures: 

precision, recall, and F-score. The studies [47] and 

[48], despite employing the same evaluation 

measures, obtained lower results when compared to 

the VAE-based approach. This indicates that the 

VAE-based approach outperformed these alternative 

methods in terms of precision, recall, and F-Score. 

The superiority of the VAE-based approach can be 

attributed to its effectiveness in retrieving relevant 

traces while maintaining a balance between precision 

(the proportion of retrieved traces that are relevant) 

and recall (the proportion of relevant traces that are 

retrieved). The F-score, which combines precision 

and recall into a single metric, further reinforces the 

strong performance of the VAE-based approach.  

 

 
(a)  

 
(b) 

 
(c) 

Figure. 7 The comparison between VAE, Study ([47]), 

and Study ([48]): (a) eTour Results, (b) SMOS Results, 

and (c) eANCI Results 

 

Overall, the findings presented in Tables 4 (a) to 4(c) 

provide robust evidence supporting the effectiveness 

of the proposed trace retrieval approach based on 

VAE. When compared to the alternative approaches 

explored in studies ([47] and [48]), the VAE-based 

approach demonstrates significant improvements 
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across all evaluation measures, highlighting its 

potential for accurate and reliable trace retrieval. 

According to the above results, the suitable 

intelligent solution for addressing the low precision 

caused by term mismatch between source artifacts 

(such as requirement documents) and target artifacts 

(such as source code) for a few labels or unlabelled 

data is unsupervised deep learning using VAE.  

5. Evaluation 

In this section, the authors describe the evaluation 

process of the retrieved links based on two criteria. 

The initial criterion assesses the efficacy of the four 

measures (i.e., precision, recall, F-score, and 

accuracy) in evaluating the traceability links between 

the source and target artifacts. The second criterion 

involves comparing the proposed trace retrieval 

approach based on unsupervised deep learning using 

VAE with three previous studies (study [6], study 

[47], and study [48]) as shown in Tables 3 (a) to (c) 

and Table 4 (a) to (c). 

6. Conclusion and future works 

This paper proposed an intelligent solution based 

on unsupervised deep learning using VAE that 

addresses the term mismatch problem between 

requirements and source code to obtain the greatest 

improvements in precision and other measures. The 

proposed approach includes four phases described in 

section 3. Each phase has its own steps, as shown in 

Fig. 1. The proposed approach was evaluated using 

two criteria: the performance of the confusion matrix, 

which includes precision, recall, F-score, and 

accuracy, as well as a comparison of results of our 

proposed approach against three previous studies 

[(study [6], study [47], and study [48])]. In the first 

study [(6)], we utilized four metrics (precision, recall, 

F-score, and accuracy) for comparison with our 

proposed approach. In the second study [(47)] and the 

third study [(48)], we employed three metrics 

(precision, recall, and F-score) for comparison with 

our proposed approach. The VAE exhibited superior 

results not only in precision but also in other 

measures such as recall, F-score, and accuracy. This 

marks a significant advancement in trace retrieval 

research, addressing a big concern related to the 

precision of trace retrieval in recovering links 

between requirements and source code. 

In future works, the authors will explore more 

intelligent solutions, based on unsupervised deep 

learning models, that can be applied to the same 

datasets (i.e., eTour, SMOS, and eANCI) to enhance 

the trace retrieval precision. 
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