
Received: July 26, 2023. Revised: September 3, 2023. 41

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.05

An Enhancing Recovery Links between Two Artifacts Using Variational

Autoencoder

Nejood Hashim Al-walidi1* Nagy Ramadan Darwish1

1Department of Information Systems and Technology,

Faculty of Graduate Studies for Statistical Research, Cairo University, Cairo, Egypt
* Corresponding author’s Email: nejood96@yahoo.com

Abstract: Traceability link recovery is a crucial task in software engineering that ensures the development of

dependable and credible software systems. Traceability links between requirements and source code support various

activities in the software development process, including change management and software maintenance. These links

can be established manually or automatically. Manual trace retrieval is a time-consuming task. Automatic trace

retrieval can be performed via various tools such as information retrieval or machine learning methods. Some

automatic tools couldn't retrieve the links between requirements and source code. Meanwhile, a big concern associated

with automated trace retrieval is the low precision problem primarily caused by the term mismatches across documents

to be traced. This study proposes an approach that addresses the low precision problem caused by the term mismatch

problem between requirements and source code to obtain the greatest improvements in trace retrieval accuracy. The

proposed approach utilizes a variational autoencoder (VAE), an unsupervised deep-learning model in the automated

trace retrieval process. We have conducted a series of experiments on three datasets: eTour, SMOS, and eANCI to

evaluate our approach against existing approaches. In order to validate the effectiveness of our proposed approach, we

compared it to three previous studies that addressed the same problem and utilized the same datasets: the first study

used unsupervised machine learning based on clustering, the second study used active learning, and the third study

used a classification machine learning. The results show that our proposed approach improves the trace retrieval

precision in the automated trace retrieval process.

Keywords: Requirements traceability, Term mismatch, Trace retrieval, Deep learning, Variational autoencoder.

1. Introduction

Traceability link recovery (TLR) is a crucial task

in software engineering that involves restoring links

between source artifacts (such as requirement

documents) and target artifacts (such as source code)

within the same project [1]. Traceability is a critical

aspect of software development [2] and maintenance,

as it supports various activities, including program

comprehension, compliance verification, change

impact analysis, and regression analysis of test cases

[3].

Traceability links can be established manually or

automatically. However, manual retrieval of

traceability links can be error-prone [4] and time-

consuming. Therefore, automatic retrieval techniques

that utilize tools such as information retrieval [5],

ontology, machine learning [6], and deep learning [7]

are often employed. Deep learning approaches can be

classified into two main categories: supervised

learning and unsupervised learning [8]. Deep

learning has exhibited impressive performance across

multiple domains, with particular success in tasks

related to natural language processing (NLP) [9].

One major issue in trace retrieval research is the

problem of low precision. Precision refers to the

proportion of accurate traces among all the retrieved

traces. When precision is low, it means that numerous

false traces are being incorrectly retrieved, requiring

users to manually evaluate the retrieved links to

identify the correct traces. This highlights the need to

focus on improving precision. Consequently, several

researchers have explored various approaches to

Received: July 26, 2023. Revised: September 3, 2023. 42

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.05

enhance precision [6, 10]. However, these attempts

have only yielded marginal improvements. The

primary cause of this problem lies in term

mismatches across the documents to be traced.

A term mismatch problem can arise between

source and target artifacts when the language used in

the target document neither matches the language of

the source document nor matches project-level

synonyms defined in a project glossary [11]. The

problem is that datasets have a limited number of

labels. These labels are provided for testing only. We

formulated the problem by choosing an intelligent

solution based on unsupervised deep learning using a

variational autoencoder. The suggestion for

addressing this problem is to choose an intelligent

solution based on unsupervised deep learning to find

probabilities among data points and effectively group

those that are similar, ultimately enhancing trace

retrieval precision. Therefore, the reason for

choosing the proposed approach is to enhance trace

retrieval precision, and this solution is suitable for

data that has few labels or unlabelled data.

In this study, to address the term mismatch

problem in automated trace retrieval, we follow the

proposed research direction toward achieving

automated trace retrieval by developing an intelligent

tracing solution namely unsupervised deep learning

based on VAE.

The variational autoencoder (VAE) is an

unsupervised deep learning model designed to handle

unlabelled datasets or a few labelled datasets,

meaning datasets that do not have direct class labels

associated with the data instances [12]. The VAE is a

popular and effective model applied to text modelling

for generating various sentences [13] and learning

representations of high-dimensional data [14]. The

primary advantage of the VAE is for learning smooth

potential state representations of input data. VAE,

known as variational autoencoder, is a latent variable

model based on probability. The observed vector x

exhibits a correlation with the low-dimensional latent

variable z through a conditional distribution [15].

VAE is widely used in many natural language

processing (NLP) tasks, such as text modelling [16].
VAE has two components encoder and decoder. VAE

simulates the probability of x as shown in Eq. (1).

𝑃θ (x) =∫ 𝑃θ (x|z) 𝑃λ (𝑧)𝑑𝑧| (1)

In this context, the posterior probability of x

given z, denoted as 𝑃θ (x|z), is represented by a neural

network with parameters θ. Similarly, the prior

probability of the latent variables, denoted as pλ(z),

is modelled by neural networks with parameters λ.

These neural networks are referred to as decoders.

As proposed, the encoder and decoder are

essential components of the VAE and operate

collaboratively to learn a compressed representation

(i.e., a latent space) of the input (service descriptions).

To evaluate the reconstruction performance and

ensure that the latent space captures meaningful

features of inputs. The third essential part of the VAE

is the cost function, which is employed [17]. Deep

recurrent networks such as ANN and LSTM are often

utilised to implement the encoder and decoder in text

modelling [18].

This paper utilizes four commonly utilized

metrics: precision, recall, F-score, and accuracy, to

assess the efficacy of the newly suggested method.

The evaluation of requirement tracing tools'

effectiveness is based on precision and recall [19].

Precision refers to the proportion of accurately

retrieved candidate links expressed as a percentage as

shown in Eq. (2), It measures the relevance of

retrieved documents [20]. Recall refers to the

correctly identified links [21] percentage as shown in

Eq. (3). The F-score utilizes to provide a balance

between precision and recall. It is the harmonic mean

of precision and recall [22] percentage as shown in

Eq. (4). Lastly, accuracy measures the percentage of

correctly classified normal and the outlier values

among the total numbers of the classifications

percentage as shown in Eq. (5). Both precision and

recall are essential. The F-Score is usually preferred

for evaluating trace results where recall is considered

more significant than precision [23].

Accuracy = (TP + TN) / (TP + FP + FN + TN) (2)

Precision = TP/ (TP + FP) (3)

Recall = TP/ (TP + FN) (4)

F-Score =2*(precision*recall)/(precision + recall)

(5)

The study is structured as follows: Section 2

presents related work in trace retrieval; Section 3

outlines the proposed approach; Section 4 discusses

the obtained results; Section 5 evaluates the results;

and section 6 concludes with a discussion of future

work.

2. Related studies

This section reviews some methods used to solve

the term mismatch problem in automated trace

retrieval between requirements and source code.

Received: July 26, 2023. Revised: September 3, 2023. 43

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.05

In [6], the authors proposed an approach that

addresses the term mismatch problem between

requirements and source code to obtain the most

significant improvements in trace retrieval accuracy.

The proposed approach used unsupervised machine

learning based on the clustering in the automated

trace retrieval process and performed an

experimental evaluation against previous

benchmarks. Unfortunately, this proposed approach

has trouble identifying some links between

requirements and source code that are very similar to

those found in standard groups, which might lead the

items to the wrong cluster.

The authors suggested a framework: BERT

(T-BERT) for establishing trace links between

requirements and source code. They employed this

framework to restore the link between issues and

commits in open-source projects. The evaluation of

three BERT architectures revealed that the single-

BERT architecture produced the most precise links,

while the Siamese-BERT architecture delivered

similar outcomes with notably lesser execution time.

By gaining knowledge and transferring it, all three

models in the framework surpassed classical IR trace

models in terms of accuracy and efficiency. The

results show that the single-BERT architecture

generated the most accurate links, while the Siamese-

BERT architecture produced comparable results with

significantly less execution time. Unfortunately, their

method is a conventional way of leveraging OSS

projects for traceability which may affect the true

links may be missed. Additionally, the authors didn't

use precision, which is considered an essential

measure for recovery links between requirements and

source code [24].

To overcome the limitation of IR/ML techniques

and adopt a probabilistic perspective towards the

traceability problem, the authors in [25] designed and

implemented a HierarchiCal PrObabilistic model for

software traceability (COMET) that can infer

candidate trace links. This model used a hierarchical

Bayesian network to model the presence of

traceability links. The authors demonstrated that

COMET outperforms IR/ML techniques and has

considerable potential for industrial applications.

They intend to extend the application of COMET to

new information sources, customize its analysis to

deduce security-related links, and deploy the

COMET plugin in collaboration with industry

partners to gather feedback. The drawback of their

model is that suitable for small systems, so it's

difficult to generalize it to other systems to infer a set

of candidate trace links [25].

Guo and his co-authors [11] examined and

compared three methods for enhancing queries to

address the term mismatch problem and improve the

quality of trace links between regulatory codes and

requirements. The first technique involves training a

classifier to replace the original query with terms

learned from a training set of trace links between

regulations and requirements. The second method

replaced the original query with terms obtained

through web mining, while the third uses a domain

ontology to expand query terms. The ontology

created manually, using an approach that leverages

existing traceability knowledge. To evaluate the

effectiveness of these techniques, they applied them

to trace security regulations from the USA

government's health insurance privacy and portability

act (HIPAA) against ten healthcare-related

requirements specifications. Their results show that

the classification-based approach yielded the best

results, but improvements were also observed with

both the classification and ontology-based solutions.

On the negative side, the web-mining technique

showed improvements only in some queries. Web

mining and ontology techniques achieved lower

results which means those techniques didn't have the

ability to retrieve all the correct links between

requirements and source code.

3. The proposed approach

In this section, the authors divided the task of the

proposed approach using the VAE model to improve

the recovery of links between requirements and

source code into four main phases. Fig. 1 illustrates

the four phases of the proposed trace retrieval

approach based on VAE. The four phases are as

follows:

Phase one is choosing suitable. Phase two

includes seven steps (feature extraction, translation,

preprocessing, lemmatization, query expansion,

TFIDF, and SMOTE). Phase three contains four steps

(encoder, decoder, train VAE, and dense NN layer).

Phase four is the evaluation method of the retrieved

links between requirements and source code as

shown in Fig. 1.

Phase 1: Choosing suitable datasets

Research in the area of automated requirements

traceability relies on the availability of different types

of datasets. Obtaining such datasets has been one of

the reported barriers by researchers in the software

engineering domain [26]. This phase introduces the

three datasets that are used in this study to evaluate

the automated trace retrieval between source artifact

(requirements) and target artifact (source code).

Received: July 26, 2023. Revised: September 3, 2023. 44

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.05

Figure. 1 Proposed trace retrieval approach using VAE

Table 1. Characteristics of the Three Datasets [26, 27, 28,

29, 30]

Name

Description Source

Artifact

Target

Artifact

Correct

Links

eTour “Is an

electronic

tourist

guide

developed

by

students”

Use

Cases

(58)

Source

Code

Classes

(116)

336

SMOS “Is an

application

that is used

to monitor

high school

students

(e.g.,

absence,

grades).”

Use

Cases

(67)

Source

Code

Classes

(100)

1045

eANCI “A system

providing

support to

manage

Italian

municipalit

ies”

Use

Cases

(140)

Source

Code

Classes

(55)

567

Table 1 briefly defines the characteristics of the

datasets used in the study approach. These datasets

are available through http://www.CoEST.org.

The reason for choosing these datasets is because

they are publicly available, meaning that anyone can

access them and use them for research or analysis this

is important because it allows for greater

transparency. Also, these datasets are used to

evaluate the automated trace retrieval approach

between requirements and source code. The three

datasets are compatible with different tools such as

Python.

Phase 2: Preparing the datasets.

The authors divided this phase into seven steps as

follows:

Step 1, Feature extraction. In order to establish

traceability links between the source artifact (written

in natural language) and the target artifact (written in

the programming language Java) was necessary to

extract key features from each. The source artifact

contained various types of information, but not all of

it was relevant to the study's goal. Thus, the authors

focused on extracting the most significant features

from the source code, which included the class name,

class attributes, class comments, method comments,

method name, method parameters, and method

return. They also extracted two primary features from

the requirements: title and description.

Step 2, Translation. Requirements and source code

artifact contained some Italian text, including words

and sentences within certain lines. As a result, the

authors needed to translate the content of both

artifacts into English. To accomplish this, authors

utilized a sophisticated translation engine to translate

the documents into English, especially if they were

initially not written in English. Specifically, they

employed ChatGPT. "ChatGPT is a public tool

developed by OpenAI that is based on the GPT

language model technology"[31]. “ChatGPT is a

single model handling various NLP tasks and

covering different languages, which can be

considered a unified multilingual machine translation

model.” [32].

Step 3, Applying other pre-processing steps, such as

camel_case_split, under_score_split, converting

from upper case to lower case, removing

punctuations, removing stop words, removing

numbers, and removing single characters.

Step 4, Lemmatization. Lemmatization is a

fundamental NLP task that includes transforming a

word in its inflected form to its base or lemma form.

It is a technique employed in a variety of NLP tasks.

The primary objective of lemmatization is to

standardize words to their canonical forms, which can

enhance the accuracy and effectiveness of subsequent

NLP tasks [33].

Received: July 26, 2023. Revised: September 3, 2023. 45

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.05

Figure. 2 VAE Architecture [41]

Step 5, Query expansion (QE). Query expansion is a

method of finding suitable terms for the

reformulation of queries to resolve the short query

and word mismatch problem and enhance the

performance of the retrieving the information [34].
WordNet is a lexical database for the English

language that is commonly used in natural language

processing and computational linguistics. It is a

large-scale, electronic database that contains

information about words and their semantic

relationships, such as synonyms, antonyms,

hypernyms (words that are more general), hyponyms

(words that are more specific), and meronyms (words

that are part of the whole) [35]. In this step, the

authors employed QE using WordNet to augment

queries with related words, with the goal of

increasing the number of retrieved documents and

enhancing recall performance. To achieve this, the

researchers extracted all words within each query and

automatically selected synonyms for each individual

word.

Step 6, Encoding (TFIDF). There are several

techniques available to transform the text into

numerical vectors, such as TFIDF encoding,

Dec2Vec, Word2Vec, and bag of words (BOW) [36].

In this study, authors opted to use TFIDF encoding as

it was found to produce better results compared to

other methods that they experimented with in their

previous study.

Step 7, SMOTE method. The authors previously

acknowledged certain problems associated with three

datasets (eTour, SMOS, and eANCI) in their research

(See ref. [6]). Specifically, all three datasets are

imbalanced, and to address this issue, the authors

proposed oversampling algorithm for deep learning

models called SMOTE, which based on the widely

used SMOTE method. The authors applied this

method before training the VAE model.

Phase 3: Build the variational autoencoder (VAE)

model

Variational autoencoders (VAEs) are generative

models that learn to simulate the latent representation

of data [37]. It is used to improve the quality of the

generated outputs [38]. Variational autoencoders

(VAEs) [39] consist of two deep neural networks: an

encoder network and a decoder network [40]. Fig. 2

illustrates the architecture of the VAE mode.

This phase consists of four steps as follows:

Step 1. Creating the encoder model. Given an input

data point x, the VAE aims to encode it into a low-

dimensional latent space representation z. These are

achieved through an encoder network that

parameterizes a distribution qφ(z|x), where φ

represents the encoder network's parameters [40].

Step 2. Creating the decoder model. The latent

variable z is then passed through a decoder network,

parameterized by θ, which aims to reconstruct the

original input x. The decoder outputs the parameters

of the conditional distribution 𝑷𝛉 (x|z), which

represents the reconstructed data distribution [42].

The process of encoding involves the acquisition

of latent variables from the input, and the decoding

process generates output by utilizing samples of these

latent variables with an adequate amount of training

data both the encoder and the decoder can be trained

simultaneously by minimizing the reconstruction loss

and the Kullback-Leibler (KL) divergence between

the distributions of the latent variables and

independent normal distributions [40].

Generally, the encoder network turns the input

samples (x) into two parameters in a latent space:

(z_mean and z_log_sigma). Then, it randomly

samples similar points (z) from the latent normal

distribution that is assumed to generate data via

z = z_mean + exp(z_log_sigma) * epsilon, where

epsilon is a random normal tensor. Finally, the

decoder network maps these latent space points back

to the original input data.

Custom loss function: The loss function consists

of two components. The first component is the

reconstruction error Eqφ(z|x) [log P θ (x|z)]. The

second component is the relative entropy, which

facilitates learning of the model distribution qφ(z|x)

to approximate the actual prior probability pλ(z),

specifically a normal distribution. Before training the

variational autoencoder model, the final step is to

create a custom loss function and compile the model.

Then, the loss function will compare inputs and

outputs and try to minimize the difference between

them [43].

Received: July 26, 2023. Revised: September 3, 2023. 46

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.05

Figure. 3 Creating the encoder model (structural diagram)

Step 3: Training the VAE model. The overall

objective is to minimize the sum of the reconstruction

loss and the regularization loss. These are done by

optimizing the parameters of both the encoder (φ)

and the decoder (θ) networks using techniques such

as stochastic gradient descent (SGD) or its variants

[44].

The authors specified dimensions for input/output

and latent space layers. They determined the

original_dim is equal to 7200, and the latent space

Figure. 4 Creating the decoder model (structural diagram)

dimension is equal to 2, as shown in Fig. 3. The

authors trained the VAE model for 150 epochs with a

batch size of 16 in the experiments as follow:

history = vae.fit(x_train, x_train, epochs=150, batch

_size=16, validation_data=(x_val, x_val))

Fig. 4 shows the processes of creating a decoder

model. It is an essential component of VAE. It's

responsible for mapping an encoded latent space

representation of the input data back to its original

form. The figure illustrates the steps involved in

constructing the decoder model architecture.

Step 4. Dense NN layer

In this step, a dense layer in a neural network is

characterized by its fully interconnected nature with

the preceding layer, where each neuron in the layer is

connected to every neuron of its preceding layer. This

layer is widely employed in artificial neural networks

and is considered as one of the most commonly used

layers [45]. To determine the most likely answer to a

classification problem, the Sigmoid activation

Received: July 26, 2023. Revised: September 3, 2023. 47

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.05

Table 2. Results of the proposed trace retrieval approach

using VAE

Datasets Precision Recall F-Score Accuracy

eTour 0.93 0.99 0.96 0.99

SMOS 0.91 0.99 0.95 0.98

eANCI 0.95 0.91 0.93 0.97

Figure. 5 The Results of the proposed trace retrieval

approach using VAE

function is employed at the output layer [46] and

maps the input to the range between (0 and 1).

clf = Dense (1, activation='sigmoid') (vae. Layers [1].

output [2])

Phase 4: Evaluation

In this phase, the evaluation method of the

retrieved links between requirements and source code

using VAE is the performance of the four measures

(i.e., precision, recall, F-score, and accuracy).

4. Results

Before presenting the results, we will evaluate the

success of the strategy provided in this study. We

have used Python Google colab as a cloud-based

platform that allows users to write and execute

Python code in a web browser without requiring any

setup. Various types of Python packages are used,

such as the scikit-learn package, TensorFlow, and

Keras platform. We set the hyperparameters to train

the VAE model. First, we specified the original_dim

= 7200 and the latent space dimension= 2, the

epochs= 150, and batch_size=16. The results of those

hyperparameters are as follows: the total params:

932,767, trainable params: 932,767, and non-

trainable params: 0. Also, we placed the epochs=20

and batch_size=10 to fit the VAE model to get

optimal parameters for the encoder and decoder

networks. The encoder encodes the input data into a

probabilistic distribution in a lower-dimensional

latent space. The mean (μ) and log-variance (log 2)

parameters define this distribution. Latent variables

are sampled through reparameterization, and the

original data is then decoded using a generator

network. The regularisation term (KL divergence) in

the VAE's loss function maintains the latent space's

resemblance to a typical Gaussian distribution. These

elements are optimised during training, allowing the

VAE to produce unique data by sampling from the

latent space. Second, we compute the confusion

matrix: precision, recall, F-score and accuracy using

" sklearn.metrics" to get the final results.

The results of this study are divided into two parts

as follows:

First: Results of applying the proposed trace

Retrieval Approach based on VAE described in

Section 3, which consists of four phases, as shown in

Fig. 1. Second: comparing the proposed trace

retrieval approach results with three studies (i.e.,

studies [6] and [47], and [47]). Study ([6]) utilized

unsupervised machine learning-based clustering,

Study ([47]) utilized active learning, and study ([48])

utilized supervised machine learning.

First: Results of the proposed trace retrieval

approach based VAE.

As mentioned in section 3, the authors applied the

Variational autoencoder to the three datasets (i.e.

eTour, SMOS, and eANCI) described in Phase 1 of

the proposed trace retrieval approach. The results of

the proposed trace retrieval approach based on VAE

are presented here, which include four measures:

Precision, recall, F-Score, and accuracy, as shown in

(Table 2) and Fig. 5. The proposed approach achieved

the highest results using the four measures of the

confusion matrix with the three datasets, as shown in

(Table 2) and Fig. 5.

Table 2 and Fig. 5 indicate that the VAE achieves

the highest results across three datasets, with some

variation between the four measures. For instance,

the highest precision is achieved with the eANCI

dataset, the highest recall across eTour and SMOS

datasets, and the highest F-score and accuracy with

the eTour dataset.

Based on Table 2, these findings suggest that the

VAE-based approach is effective across different

datasets and has the ability to perform well in

multiple evaluation measures. However, the variation

between the four measures indicates that the

approach may excel in certain areas over others

depending on the dataset used. This highlights the

importance of considering the unique characteristics

of each dataset when evaluating the performance of

the approach. Overall, the results demonstrate the

potential of the VAE for improving precision, recall,

F-score, and accuracy.

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0 1 2 3 4 5

VAE Results

eTour SMOS eANCI

Precision

Accuracy

F-Score

Recall

Received: July 26, 2023. Revised: September 3, 2023. 48

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.05

Table 3. Results comparison: VAE and Clustering: (a)

eTour, (b) SMOS, and (c) eANCI

(a)

Measure VAE Clustering

Precision 0.93 0.93

Recall 0.99 0.97

F-Score 0.96 0.94

Accuracy 0.99 0.91

(b)

Measure VAE Clustering

Precision 0.91 0.73

Recall 0.99 0.76

F-Score 0.95 0.74

Accuracy 0.98 0.66

(c)

Measure VAE Clustering

Precision 0.95 0.64

Recall 0.91 0.77

F-Score 0.93 0.70

Accuracy 0.97 0.60

Second: We compared the proposed trace retrieval

approach results with three previous studies (i.e.,

studies [6] and [47], and [48]) and using three

Parameters of comparison (i.e., precision, recall, and

F-score) and these parameters are used with our

proposed approach also were have used in three

previous studies. Our proposed approach and three

previous studies used the same datasets (i.e., eTour,

SOMS, and eANCI).

Study ([6]) utilized unsupervised machine learning

based on clustering to address the same problem and

used the same datasets for solving low precision

between requirements and source code. The authors

applied four clustering algorithms (K-means++,

GMM, Hierarchical, and DBSCAN) to three datasets

(eTour, SMOS, and eANCI). We have chosen the

highest results from this study to compare with our

proposed approach. Table 3 (a) to (c) presents a

comparison between the proposed trace retrieval

approach based on VAE and unsupervised machine

learning based on clustering using the K-means++

algorithm. Four metrics, namely precision, recall, F-

score, and accuracy, are used to compare the

performance of these approaches.

Tables 3 (a) to 3(c) and Fig. 6 (a) to (c) depict that

the proposed trace retrieval-based approach, based on

VAE, achieved the same precision results as the study

([6]) in the eTour dataset. In contrast, VAE achieved

higher results in recall and F-score in the eTour

dataset compared to the study ([6]). In the SMOS and

eANCI datasets, the proposed trace retrieval

approach based on VAE achieves the highest results

in precision, recall, F-score, and accuracy compared

to the study ([6]).

(a)

(b)

(c)

Figure. 6 Result comparison: VAE and Clustering: (a)

eTour, (b) SMOS, and (c) eANCI

Table 4 (a to c) presents a comparison between

the two studies (Study [47] and Study [48]) and the

proposed approach based on VAE.

In (Study [47]), the authors proposed an approach

for trace link recovery (TLR) based on active learning

(AL), referred to as the AL-based approach to

retrieve links between requirements and source code.

We have chosen the highest results from this study to

compare with our proposed approach. In (Study [48]),
the authors introduced an approach for traceability

link recovery, which focuses on measuring the

similarity between requirements and source code by

exploring their respective features. To achieve this,

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0 1 2 3 4 5

eTour results comparison: VAE and Clustering

VAE Clustering

Precision

Recall

Accuracy

F-Score

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5

SMOS results comparison: VAE and Clustering

VAE Clustering

Precision Recall F-Score Accuracy

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5

eANCI results comparison: VAE and Clustering

VAE Clustering

Recall F-Score AccuracyPrecision

Received: July 26, 2023. Revised: September 3, 2023. 49

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.05

Table 4. Results comparison: VAE and two Studies: (a)

eTour, (b) SMOS, and (c) eANCI

(a)

Measure VAE Study [47] Study [48]

Precision 0.93 0.68 0.66

Recall 0.99 0.34 0.59

F-Score 0.96 0.46 0.61

(b)

Measure VAE Study [47] Study [48]

Precision 0.91 0.57 0.75

Recall 0.99 0.29 0.33

F-Score 0.95 0.39 0.51

(c)

Measure VAE Study [47] Study [48]

Precision 0.95 0.73 0.62

Recall 0.91 0.44 0.54

F-Score 0.93 0.55 0.58

they combined machine learning and logical

reasoning models. We have chosen the highest results

from this study to compare with our proposed

approach.

The following Tables 4 (a) to 4(c) present the

results of the comparison between our proposed

approach using VAE and (Study [47], and Study

[48]) using three parameters (i.e., precision, recall,

and F-score).

Tables 4 (a) to (c) and Fig. 7 (a) to (c) present the

results of the evaluation conducted on the proposed

trace retrieval approach, which is based on the

variational autoencoder (VAE). The evaluation was

performed using three datasets, and the primary focus

of this study was the precision measure. However, the

proposed approach also demonstrated high

performance in terms of recall and F-score.

Comparing the results with two other studies

referenced (Study [47] utilizing active learning

techniques) and (Study [48]) combining machine

learning and logical reasoning models, it is evident

that the proposed trace retrieval approach achieved

superior results across all three evaluation measures:

precision, recall, and F-score. The studies [47] and

[48], despite employing the same evaluation

measures, obtained lower results when compared to

the VAE-based approach. This indicates that the

VAE-based approach outperformed these alternative

methods in terms of precision, recall, and F-Score.

The superiority of the VAE-based approach can be

attributed to its effectiveness in retrieving relevant

traces while maintaining a balance between precision

(the proportion of retrieved traces that are relevant)

and recall (the proportion of relevant traces that are

retrieved). The F-score, which combines precision

and recall into a single metric, further reinforces the

strong performance of the VAE-based approach.

(a)

(b)

(c)

Figure. 7 The comparison between VAE, Study ([47]),

and Study ([48]): (a) eTour Results, (b) SMOS Results,

and (c) eANCI Results

Overall, the findings presented in Tables 4 (a) to 4(c)

provide robust evidence supporting the effectiveness

of the proposed trace retrieval approach based on

VAE. When compared to the alternative approaches

explored in studies ([47] and [48]), the VAE-based

approach demonstrates significant improvements

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3 3.5

eTour results comparison: VAE and two Studies

Precesion Recall F-Score

VAE Study[47] Study[48]

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3 3.5

SMOS results comparison: VAE and two Studies

Precision Recall F-Score

VAE Study[47] Study[48]

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5

eANCI results comparison: VAE and two

Precision Recall F-Score

VAE Study[47] Study[48]

Received: July 26, 2023. Revised: September 3, 2023. 50

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.05

across all evaluation measures, highlighting its

potential for accurate and reliable trace retrieval.

According to the above results, the suitable

intelligent solution for addressing the low precision

caused by term mismatch between source artifacts

(such as requirement documents) and target artifacts

(such as source code) for a few labels or unlabelled

data is unsupervised deep learning using VAE.

5. Evaluation

In this section, the authors describe the evaluation

process of the retrieved links based on two criteria.

The initial criterion assesses the efficacy of the four

measures (i.e., precision, recall, F-score, and

accuracy) in evaluating the traceability links between

the source and target artifacts. The second criterion

involves comparing the proposed trace retrieval

approach based on unsupervised deep learning using

VAE with three previous studies (study [6], study

[47], and study [48]) as shown in Tables 3 (a) to (c)

and Table 4 (a) to (c).

6. Conclusion and future works

This paper proposed an intelligent solution based

on unsupervised deep learning using VAE that

addresses the term mismatch problem between

requirements and source code to obtain the greatest

improvements in precision and other measures. The

proposed approach includes four phases described in

section 3. Each phase has its own steps, as shown in

Fig. 1. The proposed approach was evaluated using

two criteria: the performance of the confusion matrix,

which includes precision, recall, F-score, and

accuracy, as well as a comparison of results of our

proposed approach against three previous studies

[(study [6], study [47], and study [48])]. In the first

study [(6)], we utilized four metrics (precision, recall,

F-score, and accuracy) for comparison with our

proposed approach. In the second study [(47)] and the

third study [(48)], we employed three metrics

(precision, recall, and F-score) for comparison with

our proposed approach. The VAE exhibited superior

results not only in precision but also in other

measures such as recall, F-score, and accuracy. This

marks a significant advancement in trace retrieval

research, addressing a big concern related to the

precision of trace retrieval in recovering links

between requirements and source code.

In future works, the authors will explore more

intelligent solutions, based on unsupervised deep

learning models, that can be applied to the same

datasets (i.e., eTour, SMOS, and eANCI) to enhance

the trace retrieval precision.

Conflicts of interest

The authors declare no conflict of interest

Authors contributions

Conceptualization, N. H. Al-walidi and N. R.

Darwish; methodology, N. H. Al-walidi; validation,

N. H. Al-walidi ; formal analysis, N. H. Al-walidi ;

investigation, N. H. Al-walidi ; resources, N. H. Al-

walidi and N. R. Darwish; data curation, N. H. Al-

walidi and N. R. Darwish; writing—original draft

preparation, N. H. Al-walidi; writing—review and

editing, N. H. Al-walidi; visualization, N. H. Al-

walidi; supervision, N. R. Darwish; project

administration, N. R. Darwish.

References

[1] T. Du, B. Shen, G. Huang, Z. Yu, and D. Wu,

“Automatic traceability link recovery via active

learning”, Frontiers of Information Technology

& Electronic Engineering, Vol. 21, No. 8, pp.

1217-1225, 2020.

[2] F. Wang, Z. Yang, B. Huang, Z. Liu, C. Zhou,

Y. Bodeveix, and M. Filali, “An approach to

generate the traceability between restricted

natural language requirements and AADL

models”, IEEE Transactions on Reliability, Vol.

69, No. 1, pp. 154-173, 2019.

[3] J. Zhu, G. Xiao, Z. Zheng, and Y. Sui,

“Enhancing Traceability Link Recovery with

Unlabeled Data”, In: Proc. of IEEE 33rd

International Symposium on Software

Reliability Engineering (ISSRE) Charlotte, NC,

USA, No. 33, pp. 446-457, 2022.

[4] C. Mills, J. E. Avila, A. Bhattacharya, G.

Kondyukov, S. Chakraborty, and S. Haiduc,

“Tracing with less data: active learning for

classification-based traceability link recovery”,

In: Proc. of IEEE International Conf. On

Software Maintenance and Evolution (ICSME)

Cleveland, OH, USA. pp. 103-113, 2019.

[5] L. Chen, D. Wang, J. Wang, and Q. Wang,

“Enhancing Unsupervised Requirements

Traceability with Sequential Semantics”, In:

Proc. of 26th Asia-Pacific Software Engineering

Conference (APSEC), Putrajaya, Malaysia, No.

26, pp. 23-30, 2019.

[6] N. H. Alwalidi, S. Azab, A. Khamis, and N.

Darwish, “Clustering-based Automated

Requirement Trace Retrieval”, International

Journal of Advanced Computer Science and

Applications, Vol. 13, No. 12, pp. 783-792, 2022.

[7] Y. Liu, J. Lin, Q. Zeng, M. Jiang, and J. C.

Huang, “Towards semantically guided

Received: July 26, 2023. Revised: September 3, 2023. 51

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.05

traceability”, In: Proc. of 2020 IEEE 28th

International Requirements Engineering

Conference (RE) Zurich, Switzerland, No. 28, pp.

328-333, 2020.

[8] S. Wang, J. Cai, Q. Lin, and W. Guo, “An

Overview of Unsupervised Deep Feature

Representation for Text Categorization”, IEEE

Transactions on Computational Social Systems,

Vol. 6, No. 3, pp. 504-517, 2019.

[9] M, Azar and L. Hamey, “Text summarization

using unsupervised deep learning”, Expert

Systems with Applications, Vol. 68, No. 20, pp.

93-105, 2017.

[10] X. Zou, R. Settimi, and J. C. Huang, “Improving

automated requirements trace retrieval: a study

of term-based enhancement methods”,

Empirical Software Engineering, Vol. 15, No. 2,

pp. 119-146, 2020.

[11] J. Guo, M. Gibiec, and J. C. Huang, “Tackling

the term-mismatch problem in automated trace

retrieval”, Empirical Software Engineering, Vol.

22, No. 3, pp. 1103-1142, 2016.

[12] D. Qian and W. Cheung, “Enhancing

variational autoencoders with mutual

information neural estimation for text

generation”, In: Proc: of the 2019 Conference on

Empirical Methods in Natural Language

Processing and the 9th International Joint

Conference on Natural Language Processing,

Hong Kong, China, Vol. 1, No. 11, Vol. 9, pp.

4047-4057, 2019.

[13] R. Li, X. Li, G. Chen, and C. Lin, “Improving

variational autoencoder for text modelling with

timestep-wise regularisation”, arXiv Preprint

arXiv, Vol. 8, No. 13, pp. 2381-2397, 2020.

[14] R. Li, X. Li, C. Lin, M. Collinson, and R. Mao,

“A stable variational autoencoder for text

modelling”, arXiv Preprint arXiv:1911.05343,

Vol. 1, No. 11, pp. 1-6, 2019.

[15] L. Che, X. Yang, and L. Wang, “Text feature

extraction based on stacked variational

autoencoder”, Microprocessors and

Microsystems, Vol. 76, No. 7, pp. 1-10, 2020.

[16] K. Moran, D. Palacio, C. B. Cárdenas, D.

McCrystal, D. Poshyvanyk, C. Shenefiel, and J.

Johnson, “Improving the effectiveness of

traceability link recovery using hierarchical

bayesian networks”, In: Proc. of the ACM/IEEE

42nd International Conference on Software

Engineering, New York, USA, Vol. 20, No. 10,

pp. 873-885, 2020.

[17] I. Lizarralde, C. Mateos, A. Zunino, T.

Majchrzak, and T. Grønli, “Discovering web

services in social web service repositories using

deep variational autoencoders”, Information

Processing & Management, Vol. 57, No. 4, pp.

1-19, 2020.

[18] X. Fang, H. Bai, J. Li, Z. Xu, M. Lyu, and I. King,

“Discrete auto-regressive variational attention

models for text modelling”, In: Proc. of

International Joint Conference on Neural

Networks (IJCNN), Shenzhen, China, Vol. 123,

No. 7, pp. 18-22, 2021.

[19] D. Cuddeback, A. Dekhtyar, and J. Hayes,

“Automated requirements traceability: The

study of human analysts”, In: Proc. of 18th IEEE

International Requirements Engineering

Conference, Sydney, NSW, Australia, Vol. 18,

No. 9, pp. 231-240, 2010.

[20] R. Lapeña, J. Font, C. Cetina, and Ó. Pastor,

“Exploring new directions in traceability link

recovery in models: The process models case”,

In: Proc. of Advanced Information Systems

Engineering: 30th International Conference,

CAiSE 2018, Tallinn, Estonia, Proceedings.

International Publishing, Vol. 30, No. 5, pp.

356-373, 2018.

[21] W. Zogaan, “Towards an Intelligent System for

Software Traceability Datasets Generation”,

Rochester Institute of Technology, Vol. 12 No.

17, pp. 1-132, 2019.

[22] A. M. Munoz and O. Rendon, “An approach

based on fog computing for providing reliability

in IoT data collection: A case study in a

Colombian coffee smart farm”, Applied Sciences,

Vol. 10, No. 24, pp. 1-16, 2020.

[23] X. Zou, R. Settimi, and J. C. Huang, “Improving

automated requirements trace retrieval: a study

of term-based enhancement methods”,

Empirical Software Engineering, Vol. 15, No. 2,

pp. 119-146, 2010.

[24] J. Lin, Y. Liu, Q. Zeng, M. Jiang, and J. C.

Huang, “Traceability transformed: Generating

more accurate links with pre-trained Bert

models”, In: Proc. of IEEE/ACM 43rd

International Conference on Software

Engineering (ICSE), Madrid, ES, Vol. 43, No. 5,

pp. 324-335, 2021.

[25] K. Moran, D. Palacio, N. B. Cárdenas, C.

McCrystal, D. Poshyvanyk, D. Shenefiel, and J.

Johnson, “Improving the effectiveness of

traceability link recovery using hierarchical

bayesian networks”, In: Proc. of the ACM/IEEE

42nd International Conference on Software

Engineering, Vol. 42, No. 10, pp. 873-885, 2020.

[26] P. Sharma, “Datasets Used in Fifteen Years of

Automated Requirements Traceability

Research”, Rochester Institute of Technology,

No. 12, pp. 1-90, 2017.

Received: July 26, 2023. Revised: September 3, 2023. 52

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.05

[27] T. Li, S. Wang, D. Lillis, and Z. Yang,

“Combining machine learning and logical

reasoning to improve requirements traceability

recovery”, Applied Sciences, Vol. 10, No. 20, pp.

1-23, 2020.

[28] CoEST: Center of excellence for software

traceability, http://www.CoEST.org-2023.

[29] C. Mills, J. E. Avila, A. Bhattacharya, G.

Kondyukov, Chakraborty, and S. Haiduc,

“Tracing with less data: active learning for

classification-based traceability link recovery”,

In: Proc. of IEEE International Conference on

Software Maintenance and Evolution (ICSME),

Cleveland, OH, USA, Vol. 4, No. 9, pp. 103-113,

2019.

[30] F. Faiz, R. Easmin, and A. Gias, “Achieving

Better Requirements to Code Traceability:

Which Refactoring Should Be Done First?”, In:

Proc. of 10th International Conference on the

Quality of Information and Communications

Technology (QUATIC), Lisbon, Portugal, Vol.

10, No. 9, pp. 9-14, 2016.

[31] B. Lund and T. Wang, “Chatting about

ChatGPT: how may AI and GPT impact

academia and libraries?”, Library Hi Tech News,

Vol. 40, No. 3, pp. 26-29, 2023.

[32] W. Jiao, W. Wang, J. Huang, X. Wang, and Z.

Tu, “Is ChatGPT a good translator? A

preliminary study”, arXiv preprint

arXiv:2301.08745, Vol. 1, No. 1, pp. 1-8, 2023.

[33] O. Toporkov and R. Agerri, “On the Role of

Morphological Information for Contextual

Lemmatization”, arXiv Preprint

arXiv:2302.00407, Vol. 1, No. 2, pp. 1-30, 2023.

[34] S. Akuma and P. Anendah, “New Query

Expansion Approach for Improving Web Search

Ranking”, Information Technology and

Computer Science, Vol. 15, No. 1, pp. 42-55,

2023.

[35] M. Maziarz, L. Grabowski, T. Piotrowski, E.

Rudnicka, and M. Piasecki, “Lexicalized and

Non-lexicalized Multi-word Expressions in

WordNet: a Cross-encoder Approach”, hitz.eus,

pp.1-7, 2023.

[36] M. Khatun, “Evaluating Word Embedding

Models for Traceability”, Doctoral dissertation,

Louisiana State University and Agricultural and

Mechanical College, Vol. 5414, No. 7, pp. 1-80,

2021.

[37] R. Marco and S. Ahmad, “Conditional

Variational Autoencoder with Inverse

Normalization Transformation on Synthetic

Data Augmentation in Software Effort

Estimation”, International Journal of Intelligent

Engineering and System, Vol. 15, No. 3, pp.

366-381, 2022, doi: 10.22266/ijies2022.0630.31.

[38] A. Maulana, C. Fatichah, and N. Suciati, “Facial

Inpainting Using Generative Adversarial

Network with Feature Reconstruction and

Landmark Loss to Preserve Spatial Consistency

in Unaligned Face Images”, International

Journal of Intelligent Engineering and System,

Vol. 13, No. 6, pp. 219-228, 2020, doi:

10.22266/ijies2020.1231.20.

[39] O. Boyar and I. Takeuchi, “Latent

Reconstruction-Aware Variational

Autoencoder”, arXiv Preprint

arXiv:2302.02399, Vol. 3, No. 2, pp. 1-20, 2023.

[40] K. Han, H. Wen, J. Shi, J. Lu, K. Zhang, D. Fu,

and Z. Liu, “Variational autoencoder: An

unsupervised model for encoding and decoding

fMRI activity in visual cortex”, Neuro Image,

Vol. 198, No. 9, pp. 125-136, 2019.

[41] K. Rungta, G. Chau, A. Dewangan, M. Wagner,

and L. Huang, “Sentence Generation and

Classification with Variational Autoencoder and

BERT”, margotwagner.com, No.2, pp.1-11,

2022.

[42] R. Wei, C. Garcia, A. E. Sayed, V. Peterson, and

A. Mahmood, “Variations in variational

autoencoders-a comparative evaluation”, IEEE

Access, Vol. 8, No. 8, pp. 153651-153670, 2020.

[43] A. Asperti and M. Trentin, “Balancing

reconstruction error and kullback-leibler

divergence in variational autoencoders”, IEEE

Access, Vol. 8, No. 11, pp. 199440-199448,

2020.

[44] https://analyticsindiamag.com/a-complete-

understanding-of-dense-layers-in-neural-

networks/, 2023.

[45] Y. Qiu and X. Wang, “Stochastic approximate

gradient descent via the Langevin algorithm”,

In: Proc. of the AAAI Conference on Artificial

Intelligence, New York, USA, Vol. 34, No. 04,

pp. 5428-5435, 2020.

[46] A. Sharma, K. Aggarwal, G. Bhardwaj, S.

Chakrabarti, P. Chakrabarti, T. J. Abawajy, and

H. Mahdin, “Classification of Indian classical

music with time-series matching deep learning

approach”, IEEE Access, Vol. 9, No., pp.

102041-102052, 2021.

[47] T. Du, B. Shen, G. Huang, Z. Yu, and D. Wu,

“Automatic traceability link recovery via active

learning. Frontiers of Information Technology

and Electronic Engineering”, Frontiers of

Information Technology & Electronic

Engineering, Vol. 21, No. 8, pp. 1217-1225,

2020.

[48] T. Li, S. Wang, D. Lillis, and Z. Yang,

Received: July 26, 2023. Revised: September 3, 2023. 53

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.05

“Combining machine learning and logical

reasoning to improve requirements traceability

recovery”, Applied Sciences, Vol. 10, No. 20, pp.

1-23, 2020.

