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Abstract: Biological data analyses involve researchers from several fields. To store and manipulate the huge volume 

of biological data obtained from different aspects is difficult. Compression algorithms considerably increase the 

storage medium's capacity while reducing the number of bits required representing the sequence. The core concept 

behind EIBDNASCA involves creating an optimized index file, which stores the non-repetitive bases (run length less 

than 8). This index file plays a crucial role in swiftly retrieving and reconstructing specific segments of the DNA 

sequence during the decompression process. In addition to the index file, EIBDNASCA incorporates a work file, which 

stores the repetitive bases (run length above 8) and represented in binary form. This work file allows the algorithm to 

perform various pre-processing and transformation tasks on the DNA sequence before generating the final compressed 

output. Finally, an enhanced Huffman coding technique is applied to the symbols present in the index file, optimizing 

the encoding process for more efficient compression. The proposed algorithm is examined using a variety of different 

GenBank database sources. Compression ratio, compression gain, and time required to compress and decompress the 

sequences are the metrics used to assess the performance. The experimental findings indicate that EIBDNASCA attains 

an average compression ratio of 1.23 bpb (bits per base) with an average compression gain of 84.52%. The average 

compression time is recorded at 0.590 seconds, and decompression is completed in 0.625 seconds. 

Keywords: Compression ratio, Deoxyribonucleic acid, Huffman coding, Index file, Run length encoding. 

 

 

1. Introduction 

Three kinds of molecules are involved in the story 

of genetic material namely proteins, 

deoxyribonucleic acid (DNA) and Ribonucleic acid 

(RNA). Proteins: a set of molecules whose behavior, 

concentration and shape determine the cell’s 

properties. The cells of hair, nerve or blood are 

distinct because they are composed of different kinds 

of proteins. DNA: another molecule that defines the 

specific proteins and in turn depends on proteins to 

become active. RNA: Its structure is similar to DNA. 

The nucleus of a cell contains the genetic material 

DNA that is transmitted from one generation to the 

next.  

The DNA molecule are chains of long strands 

composed of four different kinds of bases Adenine 

(A), Cytosine (C), Guanine (G), and Thymine (T). 

Two strands are joined together as bases can bind to 

each other (For example: Adenine – Thymine and 

Cytosine – Guanine). A DNA sequence is a long 

string that describes the accurate ordering of these 

four bases.  

Growth in bioinformatics allows fast collection 

and interpretation of biological datasets. In the field 

of data processing and interpretation, biologists 

encountered similar type of information overload and 

faced a lot of challenges. One of the important 

challenges was to collect biological information of 

individual DNA sequences and determine the order 

of the sequences that make up human DNA. Recent 

genome projects generate trillions of base pairs of 

biological data at rapid rate constantly.  The Release 

254(February 2023) of GenBank contains 

1731302248418 bases [1].  

Table 1 shows the number of bases as a pointer of 

the augmentation of GenBank database.  
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Table 1. Statistics of GenBank  

(From February 2022 to February 2023) 

Release 
Month  

Year 

Number of 

Bases 
Sequences 

248 02 / 2022 1173984081721 236338284 

249 04 / 2022 1266154890918 237520318 

250 06 / 2022 1395628631187 239017893 

251 08 / 2022 1492800704497 239915786 

252 10 / 2022 1562963366851 240539282 

253 12 / 2022 1635594138493 241015745 

254 02 / 2023 1731302248418 241830635 

 

Storing large volume of DNA sequences will 

effect in memory overflow. The amount of available 

storage space is classically the bottleneck. Another 

interesting and important setback is transmitting the 

DNA sequences from one place to another. Network 

traffic is generated when datasets are transferred 

between databases. In such cases, accessing DNA 

sequences is a difficult problem in many scientific 

applications. As a result, several algorithms are 

proposed to compress the size of sequences. 

Compression is the task of minimizing the bits to 

represent a base. Two types of compression 

techniques are: Lossy and lossless. Data compressed 

using lossy techniques cannot be recovered exactly. 

The reconstructed data differs from original one. 

DNA variant, called mutation occurs when (1) one 

base being replaced incorrectly by another base (2) 

addition of an incorrect base to the sequence (3) 

deletion of a correct base from the sequence. In such 

cases the sequence gets altered and lead to 

malfunctioning. For this reason a lossy compression 

technique is not usually applied to text compression, 

specifically DNA sequence compression. A lossless 

compression is the task to reduce the size of file and 

restore the original data in decompression. Lossless 

compression improves storage capacity and exchange 

of data worldwide. The data is uploaded and 

downloaded accurately and quickly at any instant. 

Researchers believe that the quality of compression 

largely depends on the repetitive and/or non-

repetitive bases within the DNA sequence. Therefore, 

repetitive/non-repetitive bases have received a 

considerable amount of attention in recent times.  The 

work addresses a solution to this problem with the 

help of lossless compression. Several such lossless 

DNA sequence compression algorithms have been 

developed to reduce the need for large amounts of 

storage and to increase transmission. 

Some of the major compression algorithms are 

BioCompress [2], BioCompress2 [3], Gen Compress 

[4], DNACompress [5], Normalized Maximum 

Likelihood (NML) [6], GeNML [7] and DNA 

Sequence Compressor (DNASC) [8]. These 

compression algorithms are suitable for more 

repetitive similar DNA sequences but stand 

infeasible for non-repetitive DNA sequences.  

In bioinformatics, the invention of lossless 

compression algorithms might be crucial to the 

understanding and analysis of DNA sequences. 

Improving storage device capacity and reducing 

DNA sequence memory occupancy are two specific 

objectives of the research work. In order to compress 

DNA sequences, an EIBDNASCA based on run 

length encoding and improved huffman coding 

methods is introduced in the work. On both repetitive 

and non-repetitive bases, the basic RLE method is 

used. Non-repetitive bases take up more storage 

space and reduce the storage medium's capacity. 

Thus, the improved huffman coding method is used 

after moving the non-repetitive bases to an index file. 

The proposed approach seems to be a promising way 

to compress DNA sequences, even in high 

throughput situations. The paper is organized into 

five sections and the general information of each 

section is given as follows. Section 2 reviews the 

recent studies made in DNA compression. 

Performance Metrics are defined in section 3. Section 

4 describes the working of EIBDNASCA and section 

5 gives the experimental results. To conclude, 

Section 6 briefs the view of the proposed work. 

2. Related works 

Although compression methods for DNA 

sequences in bioinformatics are relatively a novel 

development, the field is strongly associated with 

various other fields. The following section discusses 

the literature review for latest DNA compression 

algorithms, its experimental methodology and results. 

Krishnamoorthy and Karthikeyan, (2022) 

proposed a novel hybrid streamlining of 

hospitalization–subordinate DNA pressure 

(HOARDNAComp) compression technique based on 

auto regression and firefly algorithm. The technique 

utilizes an even mode factual strategy associated with 

auto regression. Modified firefly computation set the 

model boundary values and addresses the issue 

during presentation of computation in a particular 

cycle. Experiments have showed that an average 

compression ratio of 1.39 bpb was obtained. The 

performance of HOARDNAComp when compared 

with DNA compression using particle swarm 

optimization (DCPSO) [9] resulted in minimum 

compression ratio [10]. 

Rosario Gilmary and Murugesan (2021) 

described a bit reduction method to compress the 

DNA sequence. The method consists of three stages, 

namely, a) reduce the number bits of DNA sequences 
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b) encode binary format to hexadecimal c) apply 

Huffman coding to hexadecimal values. This study 

was also compared with existing algorithms. The 

result showed better compression ratio and high 

saving storage. Multiple transformations and 

conversions applied to the DNA sequence, leads to 

increased complexity in compression [11]. 

Mansouri et al., (2020) used a DNA compression 

algorithm with single-block encoding (DNAC-SBE). 

In One-Bit Method, the location of bases with high 

frequencies is substituted by 1s and others by 0s. The 

SBE encodes the streams produced. Each block is 

assigned a short codeword dynamically. DNAC-SBE 

discovers the unidentified bases. The proposed 

algorithm achieved high saving percentage when 

compared with other algorithms The drawback of 

DNAC-SEB is its rigid use of  fixed block size (seven 

bits) for encoding, which lead to average 

compression results against diverse genomic data. 

[12].  

Murugesan, (2020) designed a codon based 

compression algorithm (CBCA) to compress the 

DNA sequences [13]. It compresses and 

decompresses the data without using dictionary 

which reduces the requirement of additional memory. 

The method resulted with an improved compression 

ratio of 1.59 bpb when compared to existing 

algorithms. Experimental results have shown that 

0.18 seconds is required to compress the sequences. 

The drawback pertains to utilizing fixed-length 

binary values (1 bit, 2 bits, 4 bits, 5 bits, or 6 bits) for 

the encoding process. 

Hui Chen, (2020) developed a context modeling 

tool named entropy coding technique (ECT) for 

compressing the genomic data. The input sequence is 

alienated into coding sequence, intron, RNA and 

residual clusters. It amalgamates the features of 

entropy coding technique. Initially, all sets will be 

arranged associated to the specific sequence features 

and ECT will encode these sequences. The ECT 

achieved an average of 1.72 bpb compression ratio. 

Disadvantage: it needs long computation time [14]. 

3. Performance metrics 

The following are the metrics to measure the 

efficiency of a compression algorithm: 

3.1 Compression ratio (CR) 

Compression ratio binds the size of original file 

to the size of reduced file. It is articulated in bits per 

base (bpb) or bits per character (bpc).  
 

CR = Compressed file size / Original file size 

3.2 Compression factor (CF) 

Compression factor depicts the ratio of original 

file size to the compressed file size. The compression 

factor is defined as 
 

CF = Original file size / Compressed file size 

3.3 Saving percentage (SP) 

Saving percentage depends on the value of 

original file size minus compressed file and the 

original file size. It is expressed in terms of 

percentage.  
 

SP = (Original file size -Compressed file size) / 

Original file size 

3.4 Compression time 

Compression time is the time needed to compress 

a file. 

3.5 Decompression time 

The time needed to rebuild the file to its original 

is termed as decompression. Compression and 

decompression time are formally expressed in 

seconds. 

4. Proposed algorithm 

Current DNA sequencing technologies generate 

large volume of genomic data (DNA Sequences). 

Rapid growth of these sequences has become 

extremely high. They are readily available for 

sequence mining, homology searches and modeling. 

Effective and scalable storage medium that analyze 

and store these genomic datasets is required.  

Among the issues faced by the researchers of 

bioinformatics community, few of them stand out. 

i) Increase in DNA sequences led to tremendous 

need of disk storage capacity.  

ii) Transferring genomic data from one point to 

another was generally difficult and took more time.  

iii) DNA sequences contain repetitive and non-

repetitive bases. It is known that non-repetitive 

bases occupy more space in compression. 

Inference of novel pathway needs lossless 

compression algorithms to compress such 

genomic data.  

Some of the major goals associated with these issues 

are: 

i) A novel compression algorithm is required to 

reduce the size of the genomic data and achieve 

better compression ratio specifically in DNA 
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sequences containing both repetitive and non-

repetitive bases.  

ii) The algorithm must provide an efficient way to 

store the vast amount of genomic data without 

affecting the effectiveness of the storage medium. 

The compression algorithm must increase the 

capacity of storage medium. 

iii) The algorithm should be scalable and able to work 

well for various sizes. 

iv) The algorithm must be capable of transferring the 

genomic dataset from one node to another as fast 

as possible and also reduce network traffic. 

 

The need for lossless algorithms to compress the data 

is highly essential. In this research work, a novel 

algorithm has been proposed that achieves good 

compression gain, better compression ratio and 

reduced time taken for compression as well as 

decompression. In particular, the EIBDNASCA 

compresses both repetitive R and non-repetitive NR 

bases in a sequence. The EIBDNASCA combines 

both the features of RLE and improved Huffman 

coding methods. At first, apply basic RLE method to 

find repetitive R and non-repetitive NR bases in a 

sequence D. Now, read the repetitive segment R (r, 

b1; r, bn) and write the base(s) with run length > 5 in 

work file. At the work file R(r, b1; r, bn-1), the 

repetitive bases are represented in binary form while 

R(r, bn) alone represented uniquely. Then, read the 

non-repetitive bases NR (r, b1; r, bn) and write the 

base(s) with run length ≤ 5 in index file. Here, the 

non-repetitive bases NR (r, b1; r, bn-1) are written to 

the index file as symbols and NR(r, bn) alone 

represented by unique symbol. Now apply improved 

Huffman coding to the symbols in index file. Usually 

compression algorithms use a flag bit to transfer the 

base pair (runlength, base) into index file. That is, a 

flag bit set in work file (to reconstruct the data) and 

pair (runlength, base) written in index file. However, 

such algorithms have a major drawback: if the work 

file has n number of flag bits, it needs (n x s) bits to 

represent the flag bits where s is length of flag bit. 

This can occupy more storage space. To overcome 

this issue, the EIBDNASCA transfers a base pair to 

another file by representing the last base with a 

unique symbol instead of flag bit. Another important 

advantage is that the algorithm compresses the file 

based on the bases in the DNA sequence, not the file 

size. This resolves the scalability issue.   

4.1 Run length encoding (RLE) method 

The RLE method counts the occurrences k of the 

base b from the input sequence D and writes 

(runlength, base) – kb. The resulting k consecutive 

occurrence of a base is called runlength and is 

normally referred to as Run Length Encoding or RLE. 

The given sequence D has n bytes (30bases) 

‘TTTTAAGCTTTTTTTTTTTTTTTTTTTTTG’ 

taken from HUMGPRTB dataset.  The runlength k of 

the sequence is computed by applying RLE and 

replacing k occurrences with the pair kb, ‘4T 2A 1G 

1C 21T 1G’ (length 12 bytes). The highlight about 

RLE is that, the method is easy to implement and 

requires less amount of processing power. Drawback: 

for more non-repetitive NR bases the method might 

not be appropriate.  

4.2 Work file – bit representation for bases 

Table 2 shows bit representation of the 

EIBDNASCA. Let D = {b1, b2, b3 … bm} be a DNA 

sequence, where bi ∈ A, and A is the set of all bases 

in the file. Read the repetitive segment R (r, b1; r, bn) 

where r ≥ 6. Set bit representation and base value for 

R (r, b1; r, bn-1) using Table 2 and for (r, bn) uniquely 

from Table 3. Table 2 offers a comprehensive and 

novel representation of bases in the work file using a 

four-bit encoding scheme. Notably, the first bit of this 

representation, denoted as "1" serves a dual purpose: 

it signifies that the control is encoding the current 

base while simultaneously transitioning to the next 

base within the work file. However, it is crucial to 

emphasize that this control is not transferred to the 

index file. The significance of this table lies in its 

provision of detailed bit patterns for representing 

bases, covering a run length ranging from 9 to 16. For 

instance, when dealing with a run length of 9 and the 

base "A," the Bit Representation (BR) corresponds to 

000, while the base value is represented as 00. Table 

3 presents a comprehensive and detailed 

representation of the last base of the segment in the 

work file, utilizing a four-bit encoding scheme. In this 

encoding scheme, the first bit, indicated as "0" serves 

as a crucial control signal that signifies the current 

base is encoded and subsequently transferred to the 

Index file. Importantly, this transfer ensures that the 

next base in the work file is not processed. The table 

covers a range of run lengths from 9 to 16, offering 

specific Bit Representation (BR) patterns for each 

base (A, C, G, T). For instance, when dealing with a 

run length of 10 and the base "G" the corresponding 

Bit Representation is denoted as 001, while the base 

value is represented as 10. 

4.3 Huffman coding method 

David Huffman designed a lossless compression 

method that reduces the size of the file. The idea is 
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that codes using this method are referred as Huffman 

codes [15].  

Algorithm 

1. Sort the bases based on their frequency in 

descending order. 

2. Make each base as a leaf node. In the beginning, 

the least frequency base is taken. 

3. Two minimum frequency nodes are extracted to 

construct a new node. Make the minimum 

frequency base as left node and second minimum 

frequency base as right node. The new node is the 

sum of the left and right nodes frequencies. 

4. Now the new node is inserted to tree. 

5. Repeat steps (3) & (4) until reaches the root.  

6. Assign left edge ← 0 and right edge ← 1 for non-

leaf node. 

7. Now, determine codeword by traversing the tree. 

4.4 Improved huffman coding method 

The key concept of improved Huffman coding 

method is substituting a unique symbol to the bases 

contained in index file. This method can be used to 

further reduce memory space and time. For instance, 

consider a DNA sequence D = {b1, b2, b3 …bm} 

where bi ∈ A, A is the set of all bases in file. Read 

the non-repetitive segment NR (r, b1; r, bn) where r 

≤ 5. Set the symbol representation for NR (r, b1; r, 

bn-1) and uniquely for (r, bn) from Table 4. The 

Improved Huffman coding method is used in symbols 

and not to bases.  

The first part of the Table 4 is structured as an 8 x 

8 matrix, with each cell containing a symbol that 

represents a specific control code. This control code 

is responsible for encoding the current base, and then 

the encoded information is transferred to the work file. 

The rows of the matrix correspond to different run 

lengths, ranging from 1 to 8. At run length 1, denoted 

by the symbol "!", the control code encodes the 

current base as 'A' and subsequently transfers it to the 

work file. Similarly, for run lengths 2 to 8, the 

symbols represent the bases 'C', 'G', and 'T', 

respectively, and their corresponding control codes 

facilitate encoding and transfer. In table 4, the 

printable ASCII values are assigned to the bases in a 

systematic manner. For instance, the ASCII value 33 

is assigned to position a11 of the matrix, 

corresponding to the symbol "!". Similarly, ASCII 

value 34 is assigned to position a12, representing the 

symbol '"'. This pattern continues for the entire matrix, 

enabling a consistent and reliable mapping of 

symbols to their respective ASCII representations.  

The encoding scheme is based on an 8 x 8 matrix 

(second portion of Table 4), where each row  

 

Table 2. Work file – bit representation for bases 

Run 

Length 

Bit Representation (BR) – Base 

BR A C G T 

9 1000 00 01 10 11 

10 1001 00 01 10 11 

11 1010 00 01 10 11 

12 1011 00 01 10 11 

13 1100 00 01 10 11 

14 1101 00 01 10 11 

15 1110 00 01 10 11 

16 1111 00 01 10 11 

 
Table 3. Work file – bit representation for last base 

Run 

Length 

Bit Representation (BR)– Base 

BR A C G T 

9 0000 00 01 10 11 

10 0001 00 01 10 11 

11 0010 00 01 10 11 

12 0011 00 01 10 11 

13 0100 00 01 10 11 

14 0101 00 01 10 11 

15 0110 00 01 10 11 

16 0111 00 01 10 11 

 
Table 4. Symbols for bases in index file 

Run 

Length 

Symbol 

(Last base) 

Symbol 

(Base) 

A C G T A C G T 

1 ! ) 1 9 A I Q Y 

2 " * 2 : B J R Z 

3 # + 3 ; C K S [ 

4 $ , 4 < D L T \ 

5 % - 5 = E M U ] 

6 & . 6 > F N V ^ 

7 ' / 7 ? G O W _ 

8 ( 0 8 @ H P X ` 

 

corresponds to a specific run length (ranging from 1 

to 8), and each column represents one of the four 

DNA bases (A, C, G, T). The main objective of this 

encoding is to transform long DNA sequences into 

more compact symbols, facilitating the storage and 

analysis of vast genetic data. The encoding process 

involves controlling the current base and then 

encoding the subsequent base directly within the 

index file and not transfers to work file. For instance, 

for run length 2, the symbols assigned to the bases are 

'B' for A, 'J' for C, 'R' for G, and 'Z' for T. Moreover, 

the ASCII values are employed to assign specific 

numerical values to the bases in the matrix, 

streamlining the encoding process further. 
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Illustration 

The working principle of the EIBDNASCA is 

demonstrated as follows: 

A sequence D with size 41 bytes is taken.   

 

D={AAAAACCCTTAAAAAAAACCCCCCGGGT

TTTTTTTTGGGGG}, | D | = 41.  

After applying RLE to D 

5A 3C 2T 8A 6C 3G 9T 5G 
 

Work file 

9T 

0000-

11 

Index file 

5A 3C 2T 8A 6C 3G 5G 

E K Z H N 3 5 

 

Table 5 illustrates the bits required to represent the 

bases after applying improved Huffman coding in 

index file. 

 

Required bits = 2 x Frequency (5A) + 2 x Frequency 

(3C) + 3 x Frequency (2T) + 3 x Frequency (8A) + 3 

x Frequency (6C) + 4 x Frequency (3G) + 4 x 

Frequency (5G) 

= 2 x 1 + 2 x 1 + 3 x 1 + 3 x 1+ 3 x 1 + 4 x 1+ 4 x 1 

=2+2+3+3+3+4+ = 21 bits 

 

Size after Compression = Work file + Index file 

= 06 bits + 21 bits 

= 27 bits  

= 3.37 bytes 

 

Compression ratio is given by 

 

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜  =  
𝑆𝑖𝑧𝑒 𝑎𝑓𝑡𝑒𝑟 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑆𝑖𝑧𝑒 𝑏𝑒𝑓𝑜𝑟𝑒 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛
 𝑥 8 

= (3.37 / 41) x 8 

= 0.65 bpb 

5. Results and discussion 

5.1 Datasets 

Six different standard benchmark datasets taken 

from GenBank database are used to experiment the 

proposed method. Table 6 gives the major 

descriptions of these datasets. The EIBDNASCA is 

implemented and executed in Java. Relationship 

between size of file before compression and after 

compression (original size and compressed size) is 

needed to be considered.  

 

Table 5. Improved Huffman coding method 

Bases Symbols Frequency 
Code 

Word 

Length 

of 

Codewo

rd 

Number of 

Bits 

Required 

5A E 1 00 2 2 

3C K 1 01 2 2 

2T Z 1 100 3 3 

8A H 1 101 3 3 

6C N 1 110 3 3 

3G 3 1 1110 4 4 

5G 5 1 1111 4 4 

Required bits = 21 bits 

EIBDNASCA 

 
 

for all bases b of D do 

Compute the runlength of b 

for i = 0 to |D| 

runlength ← 1 

while i+1 < |D| && D.base(i) = 

=D.base(i+1) 

runlength ← runlength + 1 

i ←i + 1 

end while 

append (runlength, base(i)) 

end for 
 

Work file – Bit Representation 

for all pairs P1 do 

for g = 0 to | P1 | 

while g+1 < | P1 | && P1.runlength(g) ≥ 

6 

R ← runlength, base 

g ←g + 1 

end while 

for j = 0 to | R | - 1 do 

br ← set bit representation 

end for 

lastbase ← set unique bit representation 

append (br, lastbase) 

end for 
 

Index file – Symbol representation 

for all pairs P1 do 

for g = 0 to | P1 | 

while g+1 < | P1 | && P1.runlength(g) ≤ 

5 

NR ← runlength, base 

g ←g + 1 

end while 

for j = 0 to | NR | - 1 do 

s ← symbol 

end for 

slastbase ← unique symbol 

end for 

for i to s 

s.frequency++ 

codewords ← createTree(s.frequency) 

append (codewords) 

end for 

Compute the run length of bases 
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Table 6. Description of standard bench mark datasets 

Source of 

Sequence 

Name of the 

Sequence 

Length 

(Bytes) 

Size of File 

(Kilobytes) 

Chloroplast Chmpxx 121024 118.19 

Human 

Humdystrop 38770 37.86 

Humhbb 73308 71.59 

Humhprtb 56737 55.40 

Mitochondria Mpomtcg 186609 182.23 

Virus Vaccg 191737 187.24 

 

This relationship is examined with three cases: the 

best, average and worst. It also depends on the 

number of repetitive and non-repetitive bases of 

DNA sequences. 

5.2 Best case  

The best case is when compression ratio is good. 

A sequence with several repetitive bases is taken for 

best case.  

A sequence D with size 40 bytes is taken.  

 

D={AAAAAAAAAGGGGGGCCCCCCTTTTTCC

CCCCCCCTTTTT},  | D | = 40 
 

After applying RLE to D 

9A 6G 6C 5T 9C 5T 

Work file 

9A 9C 

0000-00 0000-01 

Index file 

6G 6C 5T 5T 

V N = = 

Table 7 illustrates the bits required to represent 

the bases after applying improved Huffman coding in 

index file. Compression ratio for best case = 0.45 bpb.  
 

5.3 Average case 

A sequence D with merely average repetitive 

bases of size 40 bytes is taken.  

 

D={AAAAAAATCCCCCGGTTTCCCCCCCCCC

CCCCCAAA GGCC}, | D | = 40 

 

After applying RLE to D 

7A 1T 5C 2G 3T 15C 3A 2G 2C 

 

Work file 

15C 

0110 - 01 

Index file 

7A 1T 5C 2G 3T 3A 2G 2C 

G Y M R ; C R * 

 

Table 7. Improved huffman coding (best case) 

Bases 

with 

Runle

ngth 

Symbol 

Represen

tation 

Symb

ol’s 

Frequ

ency 

Co

de- 

Wo

rd 

Size of 

Code

word 

Bits 

Requ

ired 

5T = 2 0 1 2 

6G V 1 10 2 2 

6C N 1 11 2 2 

Total bits Required 6 

 
Table 8. Improved huffman coding (average case) 

Bases 

with 

Runle

ngth 

Symbol 

Represen

tation 

Symb

ol’s 

Frequ

ency 

Co

de- 

Wo

rd 

Size of 

Code

word 

Bits 

Requ

ired 

2G R 2 00 2 4 

7A G 1 01 2 2 

1T Y 1 100 3 3 

5C M 1 101 3 3 

3T ; 1 110 3 3 

3A C 1 111

0 

4 4 

2C * 1 111

1 

4 4 

Total bits Required 

 

23 

 

Table 8 illustrates the bits required to represent 

the bases after applying improved Huffman coding in 

index file. Compression ratio for average case = 0.72 

bpb. 

5.4 Worst case 

A sequence D with less repetition is taken. 

 

D={TAACGGGTCTCGGGGTTTTTCCCCACGT

CCCGGCTAAAGT}, | D | = 40 

 

After applying RLE to D 
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1
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C 
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G 

1

C 

1

T 

3

A 

1

G 

1

T 

Y B I S Y I Y I T ] L A I Q Y K R I Y C Q Y 

 

Table 9 illustrates the bits required to represent 

the bases after applying improved Huffman coding in 

index file. Compression ratio for worst case = 1.8 bpb.  

5.5 Results of EIBDNASCA for standard datasets 

To statistically compare the performance of the  
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Table 9. Improved huffman coding (worst case) 

Bases 

with 

Runle

ngth 

Symbol 

Represe

ntation 

Sym

bol’s 

Freq

uenc

y 

Code 

Word 

Size of 

Code 

Word 

Bits 

Req

uire

d 

1T Y 6 00 2 12 

1C I 5 01 2 10 

1G Q 2 1000 4 8 

2A B 1 1001 4 4 

3G S 1 1010 4 4 

4G T 1 1011 4 4 

5T ] 1 1100 4 4 

4C L 1 1101 4 4 

1A A 1 1110 4 4 

3C K 1 
11110

0 
6 6 

2G R 1 
11110

1 
6 6 

3A C 1 
11111

0 
6 6 

Total bits Required 72 

 
Table 10. Standard datasets results of EIBDNASCA  

DNA 

Seque

nce 

Actua

l Size 

(Byte

s) 

Reduce

d Size 

(Bytes) 

Com

pres

sion 

Rati

o 

(bps

) 

Compr

ession 

Gain % 

Time Taken 

(Seconds) 

Com

press

ion 

Deco

mpre

ssion 

Chmp

xx 

12102

4 
17345 1.14 85.66 0.544 0.578 

Humd

ystrop 
38770 6186 1.27 84.04 0.513 0.562 

Humh

bb 
73308 11132 1.21 84.81 0.519 0.546 

Humh

prtb 
56737 8936 1.25 84.25 0.509 0.591 

Mpo

mtcg 

18660

9 
30086 1.28 83.87 0.699 0.676 

Vaccg 
19173

7 
29716 1.23 84.50 0.756 0.794 

Average 1.23 84.52 0.590 0.625 

 

algorithm to that of the standard algorithms and 

existing compression algorithms the EIBDNASCA is 

experimented with basic RLE method along with 

improved Huffman coding method. Table 10 

summarizes the results of EIBDNASCA. 

Experimental results demonstrate that an average 

compression ratio of 1.23 bpb and average 

compression gain of 84.52% is achieved. The average 

time taken for compression is 0.590 seconds and that 

of decompression is 0.625 seconds. 

Table 11. Comparison analysis of EIBDNASCA over 

existing algorithms 

DNA 

Sequenc

e 

DN

AC-

SB

E 

[12] 

CB

CA  

[13

] 

E

C

T 

[1

4] 

HOA

RDNA 

Comp 

[10] 

Bit 

Redu

ction 

[11] 

IBDN

ASCA 

EIBDN

ASCA 

Chmp

xx 
1.60 - 

1.

58 
1.33 - 1.40 1.14 

Humd

ystrop 
1.72 

1.5

5 
- 1.39 1.64 1.53 1.27 

Humh

bb 
1.71 

1.5

5 

1.

83 
1.44 1.65 1.50 1.21 

Humh

prtb 
1.72 

1.5

4 

1.

85 
1.45 - 1.51 1.25 

Mpom

tcg 
1.72 

1.5

5 
- 1.40 1.62 1.57 1.28 

Vaccg 1.67 
1.5

7 

1.

78 
1.32 1.66 1.52 1.23 

Avera

ge 

Ratio 

1.69 
1.5

5 

1.

76 
1.38 1.64 1.51 1.23 

 

Table 11 presents a comparison analysis of several 

DNA sequence compression algorithms, including 

ECT, DNAC-SBE, Bit Reduction, CBCA, 

HOARDNA Comp, IBDNASCA, and the Enhanced 

Index Based DNA Sequence Compression Algorithm 

(EIBDNASCA). Among these algorithms, 

EIBDNASCA stands out with an impressive 

compression ratio of 1.23. This indicates that 

EIBDNASCA can compress DNA sequences to 

approximately 81.30% of their original size, making 

it the most efficient algorithm in the study. In contrast, 

other algorithms such as ECT, DNAC-SBE, Bit 

Reduction, CBCA, HOARDNA Comp, and 

IBDNASCA achieved compression ratios of 1.76, 

1.69, 1.64, 1.55, 1.38, and 1.51, respectively, 

resulting in percentage size reductions ranging from 

56.81% to 66.22%. EIBDNASCA consistently 

outperforms the other algorithms in terms of 

percentage of size reduction. While 

HOARDNAComp achieved the better compression 

efficiency with a percentage size reduction of 72.46%, 

EIBDNASCA managed to surpass it by a significant 

margin, achieving an 81.30% reduction. On average, 

EIBDNASCA achieved a reduction of 81.30%, 

which is substantially higher than the average 

reductions of the other algorithms, ranging from 

56.81% to 66.22%. This data highlights 

EIBDNASCA's exceptional ability to compress DNA 

sequences more effectively than existing methods, 

potentially leading to more efficient storage and 

transmission of genetic data. 
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Table 12 presents a comprehensive comparison of 

the EIBDNASCA with various standard algorithms 

used for DNA sequence compression. The data 

reveals that EIBDNASCA consistently outperforms 

all other algorithms in terms of compression 

efficiency. For instance, when considering the 

average compression ratio, EIBDNASCA achieves 

an impressive value of 1.23, which is significantly 

better than the average ratios obtained by the standard 

algorithms, ranging from 1.74 to 2.27. This indicates 

that EIBDNASCA can compress DNA sequences to 

a much smaller size compared to its counterparts. The 

average percentage of size reduction further 

underscores the exceptional performance of 

EIBDNASCA, as it achieves an average reduction of 

81.33%, while the standard algorithms achieve 

reductions ranging from 44.05% to 57.47%. This 

substantial difference in compression capabilities 

positions EIBDNASCA as a cutting-edge solution for 

DNA sequence compression, offering the potential 

for more efficient storage and analysis of genetic data. 

Analyzing the individual DNA sequences, 

EIBDNASCA consistently exhibits superior 

performance across all cases. For instance, for the 

sequence "Chmpxx" EIBDNASCA achieves a 

compression ratio of 1.14, whereas the standard 

algorithms range from 1.50 to 2.25, resulting in 

percentage size reductions of 44.05% to 54.94%. 

Similarly, for the "Humdystrop" sequence, 

EIBDNASCA attains a compression ratio of 1.27, 

while the standard algorithms range from 1.89 to 2.37, 

leading to percentage size reductions of 54.05% to 

57.47%. These results demonstrate the consistent 

superiority of EIBDNASCA in compressing DNA 

sequences across diverse cases. 

Fig. 1 depicts that the algorithm achieves good 

compression ratio for the standard benchmark 

datasets (Chmpxx, Humdystrop, Humhbb, Humhprtb, 

Mpomtcg and Vaccg). Among these Chmpxx and 

Humhbb produces higher compression ratio of 1.14 

bpb and 1.21 bpb respectively. 

Fig. 2 gives the comparison analysis over 

existing algorithms. X-axis denotes the algorithms 

and Y-axis denotes the average compression ratio 

obtained. In almost all datasets the proposed work 

resulted with notable performance when compared 

with the existing works. 

Fig. 3 describes the relation between 

compression ratio achieved by the algorithm and 

standard compression algorithms for the six standard 

datasets. The various average compression ratios 

2.27, 1.85, 1.82, 1.80, 1.79, 1.74 and 1.23 in terms of 

bpb were acquired. Thus a major observation about 

 

 
Figure. 1 Experimental results of EIBDNASCA for 

standard datasets   

 

 
Figure. 2 Average compression ratio of EIBDNASCA 

over existing algorithms 

 

Table 12. Comparison over standard algorithms 

DNA 

Seque

nce 

Win

RA

R 

Bio-

Com

pres2 

[3] 

Gen 

Com

press 

[4] 

DNA 

Com

press 

[5] 

Ge-

NM

L[7] 

DN

AS

C 

[8] 

EIBD

NASC

A 

Chmp

xx  
2.25 1.68 1.67 1.67 1.66 1.50 1.14 

Humd

ystrop  
2.37 1.93 1.92 1.91 1.91 1.89 1.27 

Humh

bb  
2.22 1.88 1.82 1.79 - - 1.21 

Humh

prtb  
2.23 1.91 1.85 1.82 1.76 1.71 1.25 

Mpom

tcg  
2.30 1.94 1.91 1.89 1.88 1.88 1.28 

Vaccg  2.23 1.76 1.76 1.76 1.76 1.70 1.23 

Avera

ge 

Ratio 

2.27 1.85 1.82 1.80 1.79 1.74 1.23 

 

 
Figure. 3 Average compression ratio of EIBDNASCA 

over standard algorithms 
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the proposed work is that when comparing standard 

algorithms and the EIBDNASCA results, one can see 

that EIBDNASCA improved the compression ratio of 

the previous works; however there is notable 

difference among the saving percentage that is 

achieved by the EIBDNASCA. 

6. Conclusion 

The work focused on lossless algorithm that 

reduces the size of DNA sequence. The novel 

algorithm exploits the features of basic RLE as well 

as improved Huffman coding for the various datasets 

to find the repetitive and non-repetitive bases. The 

repetitive bases are represented in binary form. The 

last base is uniquely represented in work file. The 

non-repetitive bases are transferred to index file and 

are represented by symbols. Here, the last base is 

denoted by unique symbol (not flag bit). As a result, 

the proposed algorithm achieves good compression 

ratio of 1.23 bpb and also improves the capacity of 

storage medium (84.52%). The time taken for 

compression is 0.590 seconds and that of 

decompression is 0.625 seconds. The illustration of 

the work in the previous section evidently shows that 

the EIBDNASCA can be useful in the reduction of 

the size of DNA sequences. The results give 

substantial development over the existing and state of 

the art compression algorithms. 
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