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Abstract: Fat extraction is a crucial aspect of diagnostic analysis in T1-weighted magnetic resonance imaging (MRI) 

images. However, the accuracy is affected by image inhomogeneity. Inhomogeneity refers to variations in signal 

intensity across an image, which can be caused by uneven magnetic fields or abnormal fluids in MRI image. This study 

uses fuzzy C-means (FCM) algorithm for fat region extraction. However, FCM is struggle with regions of similar 

intensity. The objective of this study is to propose a method for inhomogeneity correction using adaptive disk structure 

element morphological (ADSEM) approach. This rectifies the impact of inhomogeneity-induced intensity variations. 

The method is then integrated with FCM for fat extraction. This approach overcome FCM's intensity similarity 

limitation, enhancing fat extraction accuracy. Comparative assessments highlight the integrated ADSEM-FCM 

method's superiority over FCM. The quantitative assessment for proposed method in term of accuracy, recall, precision 

and F1 score is 0.9246, 0.9777, 0.7740, and 0.8526 respectively. 
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1. Introduction 

Osteosarcoma is a rare and aggressive bone 

cancer that predominantly affects individuals during 

their rapid growth phases, especially in children, 

adolescents, and young adults [1]. Osteosarcoma 

exhibits a predilection for the lower body, with 

approximately 75% of cases occurring in the lower 

extremities, encompassing the pelvis (15%) and the 

distal femur and proximal tibia (60%). Conversely, 

the upper body constitutes about 18% of 

osteosarcoma occurrences, distributed as 8% in the 

jaw and 10% in the proximal humerus. The remaining 

7% are scattered across other bones including the 

skull, ribs, lower arm, hand, spine, and sternum. 

Remarkably, the femur and tibia stand out as the most 

commonly affected bones [2].  

Magnetic resonance imaging (MRI) serves as a 

pivotal diagnostic tool in osteosarcoma due to its 

exceptional proficiency in imaging musculoskeletal 

structures, including both soft tissue and bone [3]. 

MRI encompasses a diverse array of sequences. 

Specifically, longitudinal relaxation time (T1-

weighted) provide essential information of 

anatomical view of the tissue which are fat, muscle 

and bone region. Moreover, MRI provides imaging 

across three distinct planes: axial, coronal, and 

sagittal [4], ensuring comprehensive visualization of 

osteosarcoma's anatomical context and aiding in 

precise diagnostic evaluations. T1-weighted imaging 

highlights anatomical structures, offering excellent 

tissue contrast and depicting fat as bright and fluid as 

dark [5, 6].  

In clinical practice, radiologists rely on T1-

weighted images to suppress fat signals, enabling  
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              (a)                         (b)                           (c)  

Figure. 1 Comparison between: (a) Normal, (b) 

Inhomogeneity due to uneven magnetic field, and (c) 

Inhomogeneity due to abnormal fluid 

 

precise analysis of pathological features, such as 

those seen in osteosarcoma [7]. This manual method 

presents several challenges such as subjective, prone 

to variability, and time-consuming. Due to this, it 

highlighting the need for more efficient and objective 

techniques for accurate diagnosis and assessment [8, 

9].  

In addition, the accurate interpretation of these 

images is significantly challenged by intensity 

inhomogeneity, which refers to variations in signal 

intensity across an image. Inhomogeneity can result 

from various factors, including the inherent uneven 

magnetic field of MRI machines and the presence of 

abnormal fluids within the patient's body [10, 11]. 

Addressing inhomogeneity is crucial for accurate 

fat region extraction in T1-weighted MRI images. 

Alternatively, the field has explored automated 

solutions utilizing algorithms to correct 

inhomogeneity. Among these algorithms, the fuzzy 

C-means (FCM) algorithm is frequently employed 

for image segmentation [11].  

However, FCM has its limitations. It can be 

sensitive to the initial selection of cluster centers, 

potentially leading to suboptimal results [11]. In the 

presence of inhomogeneity, FCM's performance is 

hindered by its tendency to cluster regions with 

similar intensity values, leading to inaccurate fat 

region segmentation [12, 13].  

Fig. 1 shows the comparison between normal T1-

weighted MRI images and inhomogeneity of T1-

weighted MRI images that causes by uneven 

magnetic field and abnormal fluid. 

Fig. 1 (a) shows T1-weighted MRI images with 

consistent magnetic fields, ensuring uniform signal 

intensities. This uniformity enables clear tissue 

boundary definition of fat. Contrastingly, Fig. 1 (b) 

displays T1-weighted MRI images affected by 

inhomogeneity caused by varying magnetic fields 

from the MRI machine. Fig. 1 (c) presents T1-

weighted images marred by inhomogeneity due to 

abnormal fluid within the fat region. Inhomogeneity 

introduces signal intensity variations, blurring tissue 

boundaries and hindering precise tissue 

differentiation, notably fat. 

In the present of inhomogeneity, FCM tends to 

cluster regions with similar intensity values, 

potentially leading to inaccurate segmentation, 

especially for tissues with closely matched signal 

intensities [12]. Also, fat, and adjacent muscle tissue 

can exhibit similar intensity values due to its 

influence. It is challenging for FCM in distinguishing 

these tissue types solely based on intensity values 

[13].  

Morphological dilation is a fundamental image 

processing technique that involves expanding the 

boundaries of objects in a binary image [8]. It works 

by overlaying a structuring element (SE) on the 

image and expanding the regions where the SE 

intersects with foreground pixels. The size and shape 

of the SE dictate the extent of dilation. By default, the 

SE is often manually fixed to a certain value [14]. 

However, this approach can be time-consuming and 

may require trial and error to achieve optimal results, 

especially when dealing with inhomogeneity. 

This study proposes an adaptive disk structure 

element morphological (ADSEM) method to correct 

inhomogeneity in T1-weighted MRI image. The 

corrected T1-weighted image is then integrated with 

conventional FCM algorithm, ADSEM-FCM method 

to extract the fat region in the image. The purpose of 

ADSEM-FCM method is to compensate the 

inhomogeneity and then improve the accuracy of fat 

extraction in T1-weighted MRI images. ADSEM is 

designed to automatically adjust the size of the 

structuring element (SE) based on the image's 

characteristics and the degree of inhomogeneity. By 

doing so, it eliminates the need for manual 

adjustments to enhance the efficiency and objectivity 

of the inhomogeneity correction process.  

This paper is organized as follows; section 2. 

Literature review, section 3. Research methodology, 

section 4. Results and discussion, and section 5. 

Conclusion. 

2. Literature review 

Inhomogeneity in medical imaging, such as MRI, 

refers to the non-uniformity of signal intensity across 

an image, resulting from factors like uneven magnetic 

fields or variations in tissue properties [15]. 

Correcting inhomogeneity is pivotal as it greatly 

enhances the accuracy of image segmentation which 

is a fundamental process in medical image analysis 

[16]. In addressing inhomogeneity, two primary 

approaches exist: hardware-based and algorithmic 

correction. Hardware correction involves 

adjustments to the imaging equipment such as the 

magnet but can be impractical due to its high cost and 

complexity [17]. Conversely, algorithmic methods, 

Inhomogeneity Inhomogeneity 
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offer efficient, cost-effective solutions by adaptively 

compensating for inhomogeneity during image 

processing, thereby streamlining the segmentation 

process while maintaining precision and cost-

effectiveness.  

In the research conducted by Jianhua Song et al., 

[18], they addressing challenges in brain MR imaging, 

such as inhomogeneity and noise caused by 

suboptimal field uniformity and eddy currents. 

Conventional FCM clustering methods, relying on 

local spatial constraints, often yield unsatisfactory 

results. They introduce an approach that 

simultaneously corrects intensity inhomogeneity and 

improves segmentation using an objective function 

based on spatial coherence. Their method employs a 

unique similarity measure that considers local 

neighbouring information, enhancing MR data 

separability. Additionally, it incorporates an adaptive 

nonlocal spatial regularization term to overcome 

limitations of local spatial information, effectively 

handling noise and bias field estimation in the study. 

V. Venkatesh et al., [19] introduces 

"InhomoNet," a network for MRI intensity 

inhomogeneity correction. It utilizes a multi-scale 

local information module and attention-driven skip 

connections for accurate feature capture. However, 

the method relies on supervised learning and 

necessitates ground truth data during training, which 

can be challenging to obtain accurate real-world 

scenarios with limited expert annotations. This 

dependency on ground truth data restricts its 

application to datasets with potential variability and 

uncertainty. 

An automatic method present by Hui Liu et al., 

[20] for reducing inhomogeneity in liver MRI. The 

method utilizes global and local intensity information, 

as well as spatial continuity, while preserving grey 

levels for subsequent analysis. A constraint term 

ensures appropriate correction, and a fuzzy 

membership mask is used to remove noise. However, 

the method's sensitivity to initialization and 

parameters, along with its impact on other image 

features, it is necessitating further investigation. 

Maryjo M. George et al. [21] introduce an 

effective correction which utilizes spatially 

constrained FCM clustering and anisotropic diffusion 

for compensation. However, the method's 

convergence time for real data may be a limitation, 

and further investigation is needed to assess its 

generalizability to diverse MRI datasets and impact 

on other image features. Comprehensive comparison 

with state-of-the-art methods is also necessary for a 

stronger assessment of its performance. 

Mingming Chen et. al. [22] highlight a problem 

of inhomogeneity. To overcome the limitation, the 

study introduces an approach using a modified FCM 

algorithm. This innovative method outperforms 

existing approaches, underscoring its potential to 

enhance binarization accuracy, with implications 

extending to diverse applications in optical fringe 

pattern analysis. The limitation is the performance 

may be affected by complex pixel interactions in 

intricate patterns. 

Sandhya Gudise et. al. discovered that the 

presence of inhomogeneity poses a significant 

challenge for brain segmentation [23]. The study 

proposed chaotic enhanced firefly algorithm 

integrated with fuzzy C-means (CEFAFCM) to 

improve the inhomogeneity. The method combines a 

spatially modified FCM with firefly algorithm and 

chaotic map for initialization. However, this method 

suffers a drawback of database-specific results that 

need broader dataset validation. 

In conclusion, addressing inhomogeneity in 

medical imaging is crucial for accurate segmentation. 

Existing methods have limitations; for instance, some 

rely on ground truth data, while others suffer from 

sensitivity to initialization or convergence issues. 

Moreover, existing studies demonstrate that 

conventional FCM has limitations in handling local 

spatial information, which results in noise, such as 

inhomogeneity, significantly affecting the study's 

accuracy. In this study, we present an adaptive 

morphological method to compensate inhomogeneity. 

The method is then integrated with FCM for fat 

extraction. This integration method could improve fat 

region extraction, making it a valuable tool for 

enhancing the quality and reliability of fat region 

segmentation in clinical settings.  

3. Proposed methodology 

The proposed ADSEM-FCM method is a method 

that integrates ADSEM with conventional FCM to 

extract fat in T1-weighted MRI image. In ADSEM, 

the morphological operation consists of dilation and 

erosion operator that based on adaptive SE for image 

processing. FCM is used to cluster the MRI image 

into three clusters where the region with the highest 

intensity is the fat. Eq. (1) shows the equation for 

FCM algorithm to cluster the fat region. 

 

𝐽 = ∑ ∑ 𝜇𝑖𝑗
𝑚 ∥ 𝑥𝑗 − 𝑐𝑖 ∥2𝑁

𝑗=1
𝑐
𝑖=1          (1) 

 

Where: 

' 𝐽 ' represents the objective function that the FCM 

algorithm aims to minimize.  

' 𝑐 ' is the number of clusters.  

'N' is the total number of data points.  

' 𝜇 𝑖𝑗 ' represents the membership value of data point  
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Figure. 2 Overall processes of proposed method 

 

' 𝑗 ' for cluster ' 𝑖.' 
' 𝑚 ' is a fuzzifier parameter, which is usually set to a 

value greater than 1. It controls the degree of 

fuzziness in the membership values.  

'𝑥𝑗 ' represents the data point ' 𝐽.'  

'𝑐𝑖 ' represents the center of cluster ' 𝑖.'  
' ∥ 𝑥𝑗 − 𝑐𝑖 ∥ ' represents the Euclidean distance 

between data point ' 𝑗 ' and the center of cluster ' 𝑖.' 
 

ADSEM is a method that used adaptive disk SE 

in the process of morphological to correct 

inhomogeneity in the MRI image. Fig. 2 shows the 

overall process of this study. Basically, it consists of 

four main processes which are data input, image pre-

processing, fat extraction and performance 

evaluation. 

3.1 Data input 

The data collection was conducted at Hospital 

University Sains Malaysia (HUSM), Kubang Kerian, 

Kelantan, involving T1-weighted sequences of long 

bones (femur and tibia). There are 70 images 

collected which consists of 50 femur and 20 tibia 

MRI images. Ethical approval (reference number: 

USM/JEPeM/22060378) was obtained to ensure 

patients’ rights and privacy protection. Informed 

consent was secured from patients, and data were 

handled with strict security and confidentiality 

measures. Anonymization of data was performed to 

remove identifying information.  

3.2 Image pre-processing  

In this study, image pre-processing is an 

inhomogeneity correction process. Due to inherent 

limitation of intensity inhomogeneity in the MRI 

images, the proposed ADSEM method is designed to 

correct inhomogeneity to improve the fat extraction 

process.  

The flowchart in Fig. 3 depicts a step-by-step 

ADSEM method in the process of image pre-

processing to correct inhomogeneity in T1-weighted 

MRI images. The process begins with the T1-

weighted MRI image as input and converts it into a 

binary image using global thresholding. Eq. (1) is the 

global thresholding equation used to compute the 

threshold value. 

 

 
Figure. 3 The flowchart of ADSEM method  

 

𝑇 =
1

2
(𝑇𝑚𝑎𝑥 + 𝑇𝑚𝑖𝑛)               (2) 

 

Where: 

T=Threshold value 

𝑇𝑚𝑎𝑥=maximum intensity value in the image 

𝑇𝑚𝑖𝑛=minimum intensity value in the image 

This process initially separates the background 

(black region) and foreground which is object (white 

region) in T1-weighted MRI images. The edge of an 

object which is fat is connected if the image is clear 

without noise. 

However, due to potential inhomogeneity arising, 

it will lead to a disconnected fat signal within the 

object. Therefore, multiple regions will be detected if 

there are disconnected fat signal. Preserving the 

continuity of the fat signal is crucial to ensure the 

entire object is accurately extracted, especially 

considering the entire object as the region of 

interested (ROI). This is because when the object is 

well-connected, the algorithm detects it as a single 

region; detecting multiple regions suggests 

inhomogeneity. To correct inhomogeneity, a filling 

operation is performed, and the resulting number of 

objects is counted. In cases where the ROI comprises 

only one object, inhomogeneity is absent. Detection 

of inhomogeneity triggers the "Correct 

Inhomogeneity" process, where the algorithm 

utilizing morphological dilation with an adaptive disk 

SE is applied. The SE size is dynamically adjusted 

through iterative dilation and fill hole operations, 

resolving inhomogeneity until a single-region image 

is achieved. Thus, the number of iterations is equal to  
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Figure. 4 Block diagram of ADSEM-FCM for fat 

extraction 

 

the SE size. Conversely, if single region is achieved 

indicate the inhomogeneity is corrected then filling 

operation will be ended. Next, the background noise 

is removed by setting background pixel values to 0. 

Finally, a ROI is defined based on the single region 

in the image. The ROI is then cropped to focus on the 

informative area for further analysis.  

3.3 Fat extraction 

Fig. 4 shows the block diagram of ADSEM-FCM 

method for the process of fat extraction. This process 

integrated ADSEM and FCM for fat extraction. The 

process consists of three main steps. First step 

consists of “Create Outline” and “FCM Algorithm”. 

Second step is integrating process using arithmetic 

ADD operation. Third step is morphological process 

and AND operation for fat extraction. 

The first step involves two key stages: the "Create 

Outline" and the FCM algorithm. In the 

inhomogeneity correction process, the ROI obtained 

from the previous process is dilated. In the “Create 

Outline” process, the SE size from the ADSEM is 

employed for erosion, this will result in an erode fill 

image. The outline is then created through arithmetic 

subtraction of the dilated and eroded images.  

Next process is FCM algorithm. The "FCM 

Algorithm" contributes by clustering the ROI into 

three distinct regions: high intensity (fat), 

intermediate intensity (muscle), and low intensity 

(cortical bone).  

The FCM output pertaining to the fat region is 

integrated with the outline generated using 

morphological technique in previous create outline 

process to compensate the inhomogeneity. This 

process bridges gaps in inhomogeneity. The second 

step combined the output of “Create Outline” and 

“FCM Algorithm” by using ADD Operation. The 

third step, a logical AND operation is used to 

integrate with erode fill image from “Create Outline” 

process, this is to restore the mask to its original 

dimensions, thereby refining the accuracy of fat 

region extraction. 

Table 1. The confusion matrix of four element 
Actual Non-Fat Actual Fat 

Predicted Non-Fat (TN) Predicted False Positive (FP) 

Predicted False 

Negative (FN) 

Predicted True Positive (TP) 

3.4 Performance evaluation 

The experiments were conducted using 

MATLAB 2019 on a laptop with an Intel Core i5 8th 

Gen processor and 8 GB of RAM. In this study, the 

proposed ADSEM-FCM method is experimented on 

70 T1-weighted, axial MRI images. The 

experimental results were then compared against the 

ground truth. Table 1 shows the confusion matrix was 

constructed to assess the performance evaluation. It 

consists of four elements: True positive (TP), true 

negative (TN), false positive (FP), and false negative 

(FN).  

Where: 

 

i. True positive (TP): Represents the number of 

correctly identified fat regions, where the 

algorithm correctly classified pixels or regions as 

fat, and these were also accurately labelled as fat 

in the ground truth data. 

ii. True negative (TN): Indicates the number of 

correctly identified non-fat regions, where the 

algorithm correctly classified pixels or regions as 

non-fat, and these were also accurately labelled as 

non-fat in the ground truth data. 

iii. False positive (FP): Represents the cases where 

the algorithm incorrectly classified pixels or 

regions as fat when they were non-fat in the 

ground truth data. 

iv. False negative (FN): Represents the instances 

where the algorithm incorrectly classified pixels 

or regions as non-fat when they were indeed fat in 

the ground truth data. 

 

In this study, there are 4 major metrics are used 

as performance evaluation which are accuracy, 

precision, recall and F1 score. 

 

i. Accuracy: The overall accuracy of the algorithm 

represents the proportion of correctly classified 

pixels to the total number of pixels in the image. 

Eq. (2) is the formula for accuracy. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
            (2) 

 

ii. Precision: Precision measures the algorithm's 

ability to correctly identify fat regions among all 

the regions classified as fat. Eq. (3) shows the 

formula for precision.  
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Figure. 5 The flow of proposed ADSEM method in 

intensity inhomogeneity correction 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝑇𝐹
           (3) 

 

iii. Recall: Also known as sensitivity, represents the 

algorithm's ability to correctly identify fat regions 

among all the actual fat regions present in the 

ground truth data. The formula as Eq. (4).  

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
            (4) 

 

iv. F1 Score: The F1 score is the harmonic mean of 

precision and recall, providing a balanced metric 

for both measures. The formula is shown by Eq. 

(5). 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2𝑥𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑥𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
             (5) 

4. Results and discussions 

4.1 Image pre-processing 

Fig. 5 shows the flow of proposed ADSEM 

method in correcting the inhomogeneity. Due to the 

inhomogeneity, the fat region, which constitutes the 

outer region of the object, is disrupted, indicating a 

loss of fat information. When the fat is not covered 

the entire object, multiple regions is detected indicate 

that there is inhomogeneity in the image. In this 

situation, the filling process continues, during which 

the algorithm undergoes morphological dilation 

alongside an adaptive disk SE that autonomously 

adjusts its dimensions in response to the degree of 

inhomogeneity. The filling process is ended when 

there is a single region is detected where the binary 

filled mask is the resulting ROI mask. After that, the 

background noise is eliminated by assigning pixels to 

0. This process eliminates irrelevant regions outside  

 

   

   

   
            (a)                            (b)                          (c)  

Figure. 6 Comparison between original T1-weighted 

image, image without inhomogeneity correction and 

inhomogeneity correction using ADSEM method: (a) 

Original T1-weighted, (b) Without inhomogeneity 

correction, and (c) With ADSEM inhomogeneity 

correction 

 

the object. 

Fig. 6 shows three visual comparisons of binary 

images obtained from T1-weighted MRI machine. 

The original T1-weighted MRI image is presented in 

the first column, serving as the baseline reference. 

The second column displays the binary image is 

created without inhomogeneity correction method.  

As indicated, due to the presence of 

inhomogeneity, the outer region of the object is 

disconnected. Inhomogeneity can disrupt the 

continuity and clarity of features, leading to a less 

precise segmentation. In contrast, the third column 

showcases the binary image is created by using the 

ADSEM inhomogeneity correction method. 

Therefore, it can be seen that the application of 

ADSEM effectively addresses the inhomogeneity 

issues present in the original image. The binary image 

created by using ADSEM method in the third column 

accurately outlines the ROI. The ADSEM method 

corrected the inhomogeneity and ensures the 

preservation of the important information within the 

fat regions. Hence, enhancing overall quality of ROI 

mask extraction and reliability of the fat extraction in 

the next segmentation process. 

4.2 Fat extraction 

The fat extraction process played a crucial role in 

delineating the fat regions within the T1-weighted 

MRI images. With the proposed ADSEM method the 

inhomogeneity is corrected. The output from 

ADSEM is then integrated with FCM to extract fat  
 

T1 

Original 

T1 Binary Inhomogeneity  

Correction 

T1 Crop T1 Binary 

Filled 

Inhomogeneity Inhomogeneity 
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Figure. 7 Flow of fat extraction process 

 

 
Figure. 8 Creating outline process 

 

 
Figure. 9 Result from FCM process 

 

region in the image. Fig. 7 shows the overall visual 

flow of fat extraction process after the inhomogeneity 

correction. 

First step consists of “Create Outline” and FCM 

algorithm. Fig. 8 shows the process of creating 

outline where the dilated fill image from 

inhomogeneity correction process is used to form an 

outer layer of the ROI object. Using the SE size from 

the ADSEM dilate process to erode object the 

resultant ROI will be shrink to the size of original 

image. Subtracting the eroded filled image from 

dilated filled image, an outline is created.  

Then FCM algorithm is applied to extract the fat 

region from ROI. Fig. 9 shows the fat region from 

FCM output. It can be observed that due to 

inhomogeneity, it's noticeable that the fat region, 

which forms the outer layer of the object, is 

disconnected.   

To correct the inhomogeneity, the outline 

obtained from the process create outline is then 

integrated with FCM fat region using the arithmetic 

ADD operation. This process is important to make  
 

    

    

    

    

    
        (a)                    (b)                    (c)                    (d)  

Figure. 10 Output comparison of FCM algorithm and 

proposed ADSEM-FCM method: (a) T1 original images, 

(b) Ground truth, (c) FCM algorithm, and (d) Proposed 

ADSEM-FCM 

 
Table 2. The average values of performance evaluation 

across all 70 slices of T1 MRI images between FCM and 

proposed ADSEM-FCM method 
Method ACC PREC REC F1 PT 

FCM 0.879 0.991 0.602 0.742 4.286 

ADSEM-

FCM 
0.925 0.978 0.774 0.853 5.152 

**In Table 2: ACC refer to ACCURACY, PREC refer to 

PRECISION, REC refer to RECALL, F1 refer to F1 

Score, and PT refer to PROCESSING TIME. 

 

sure the discontinuity of the region that cause by 

inhomogeneity is connected. Finally, logical AND 

operation is then applied between the resultant FCM 

outline image with erode fill image to restore the 

image into it original size. 

4.3 Performance evaluation 

Fig. 10 shows the comparison between original 

image, ground truth, FCM output and proposed 

ADSEM-FCM method output. In the figure, the 

original image consists of inhomogeneity. Due to 

inhomogeneity, FCM misses to segment some fat 

regions, resulting in loss of fat information. 

Conversely, the proposed ADSEM method correct 

inhomogeneity in T1-weighted image, the fat is 

covering the entire object, aligning with the ground 

truth. By integrating outline creation with the FCM 

algorithm, ADSEM-FCM method mitigates 
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inhomogeneity's impact on fat extraction. This 

improvement underscores its value for precise fat 

region assessment in T1-weighted MRI, particularly 

in inhomogeneous images. 

Table 2 presented a concise summary of the 

performance evaluation for the integration of two 

methods employed in this study: FCM and ADSEM 

segmentation. 

The performance evaluation can be observed that 

the ADSEM-FCM method outperforms the FCM 

method in several key aspects. ADSEM-FCM 

demonstrates higher accuracy (0.925 compared to 

0.879), indicating its ability to achieve a higher 

proportion of correct classifications.  

Precision refers to the ratio of true positive 

predictions to all positive predictions made by the 

algorithm. Often conventional FCM does not 

consider the spatial information in segmentation 

process. The influence of intensity inhomogeneity 

may falsely identify some pixel as fat. These false 

positive predictions lead to a higher precision value 

in FCM compared to ADSEM-FCM method which is 

0.991 and 0.978 respectively. 

Recall measures the algorithm's ability to capture 

all relevant instances, true positive pixels in the 

image. It measures the proportion of true positive 

predictions compared to all the pixels that are part of 

the true fat region in the image. In the comparison, it 

can be observed that ADSEM-FCM method has 

higher recall which is 0.774 compared to 0.602 for 

FCM. It shows that the ADSEM-FCM method helps 

in identifying the true fat regions more accurately, 

particularly in the presence of intensity 

inhomogeneity. As a result, the recall is higher for 

ADSEM-FCM because it accurately identifies more 

of the true fat region pixels, minimizing false 

negatives.  

F1 Score, a harmonic mean of precision and recall, 

highlights the overall balance between precision and 

recall metrics. Even precision score is lower for 

ADSEM-FCM method, however it obtains a higher 

F1 Score of 0.853 compared to conventional FCM of 

0.742. It indicates ADSEM-FCM method has better 

balance between precision and recall. Also, it shows 

that ADSEM-FCM method could minimize both 

false positives and false negatives when compared to 

conventional FCM.  

In terms of processing time, ADSEM-FCM 

method does require slightly more time (5.152 

seconds) than FCM (4.286 seconds). This is because 

ADSEM-FCM method employs an adaptive 

morphological technique to create outline that 

compensates for inhomogeneity. The extent of 

additional processing time depends on the severity of 

inhomogeneity, with need more processing 

especially for severe cases.   

Overall, Table 2 underscores the advantages of 

the proposed ADSEM-FCM method over the 

conventional FCM approach, showcasing improved 

accuracy and effectiveness in fat region segmentation, 

even in the presence of intensity inhomogeneity. 

These results underscore the potential of ADSEM-

FCM in enhancing medical image analysis, 

especially in applications such as osteosarcoma 

diagnosis and treatment. 

5. Conclusion 

This study proposed an adaptive morphological 

ADSEM method for inhomogeneity correction. 

ADSEM is then integrated with conventional FCM to 

create an outline for fat extraction. The proposed 

ADSEM-FCM algorithm effectively addresses the 

challenge of inhomogeneity, resulting in improved 

accuracy in fat region segmentation. The ADSEM-

FCM method demonstrated superior performance 

compared to conventional FCM algorithm 

approaches, especially for images with varying 

degrees of inhomogeneity. The quantitative 

evaluation, based on accuracy, precision, recall, and 

F1 score, shows that the method's effectiveness in 

identifying fat regions. Further validation and 

exploration of the proposed method on diverse 

datasets and imaging modalities are recommended to 

enhance its generalizability and clinical impact.  
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