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Abstract: There has been a massive development of metaheuristic algorithms in the latest decade where swarm 

intelligence becomes the fundamental approach. Meanwhile, there is still no ideal metaheuristic that can solve all 

problems superiorly, as declared in the no-free-lunch (NFL) theory. This work introduces a novel swarm-based 

metaheuristic named as migration-crossover algorithm (MCA). In MCA, the swarm intelligence is enriched with the 

crossover technique and the neighbourhood search with unbalanced local search space. The global finest solution 

becomes the reference in the first step while the middle between two stochastically chosen solutions becomes the 

reference in the second step. The neighbourhood search is performed in the third step. The collection of 23 functions 

become the use case during the evaluation of MCA. In the first evaluation, MCA is compared with five new 

metaheuristics: total interaction algorithm (TIA), osprey optimization algorithm (OOA), migration algorithm (MA), 

coati optimization algorithm (COA), and walrus optimization algorithm (WaOA). The result reveals that MCA is 

finer than TIA, OOA, MA, COA, and WaOA in 20, 19, 17, 20, and 17 functions subsequently. The result of the 

second evaluation reveals that the global finest solution becomes the dominant contributor in the high dimension 

functions while the middle between two stochastically chosen solutions becomes the dominant contributor in the 

fixed dimension functions.  
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1. Introduction 

There are many optimization studies utilized the 

metaheuristics to meet their objectives. In the 

biomedical system, dandelion optimization 

algorithm has been embedded to classify blood 

vessels for grading the diabetic retinopathy [1] while 

pelican optimization has been utilized to detect and 

classify tuberculosis based on the x-ray image of the 

chest [2]. In the agricultural sector, the red deer 

algorithm has been utilized to detect and classify 

plant diseases in the early season phase [3]. 

Bacterial colony optimization has been used to 

optimize the detection of DDoS attacks in the cloud 

system [4]. 

In recent years, many new metaheuristics have 

been developed based on the multiple solution-based 

metaheuristics. Another term for the metaheuristic 

consisting of multiple solutions is population-based 

metaheuristic. Moreover, within the population-

based metaheuristics, many of them were developed 

based on the swarm intelligence approach rather 

than the evolutionary-based approach. Many of the 

swarm-based metaheuristics exploit the practices of 

animals during breeding or tracing for prey or food, 

like Komodo mlipir algorithm (KMA) [5], green 

anaconda optimization (GAO) [6], walrus 

optimization algorithm (WaOA) [7], reptile search 

algorithm (RSA) [8], coati optimization algorithm 

(COA) [9], zebra optimization algorithm (ZOA) 

[10], golden jackal optimization (GJO) [11], 

chameleon swarm algorithm (CSA) [12], cat and 

mouse based optimization (CMBO) [13], clouded 

leopard optimization (CLO) [14], northern goshawk 

optimization (NGO) [15], pelican optimization 

algorithm (POA) [16], snow leopard optimization 

(SLO) [17], red fox optimization (RFO) [18], 

Siberian tiger optimization (STO) [19], white shark 
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optimization (WSO) [20], Tasmanian devil 

optimization (TDO) [21], osprey optimization 

algorithm (OOA) [22], and so on. Some 

metaheuristics use their main reference during the 

directed search for their name such as random 

selected leader-based optimization (RSLBO) [23], 

multi leader optimization (MLO) [24], mixed 

leader-based optimization (MLBO) [25], hybrid 

leader-based optimization (HLBO) [26], three 

influential member-based optimizations (TIMBO) 

[27], and so on.  Some metaheuristics imitate the 

social behavior such as chef-based optimization 

algorithm (CBOA) [28], migration algorithm (MA) 

[29], and so on. Some metaheuristics promote their 

fundamental concept as their name, such as golden 

search optimization (GSO) [30], average 

subtraction-based optimization (ASBO) [31], four 

directed search algorithms (FSDA) [32], total 

interaction algorithm (TIA) [33], walk-spread 

algorithm (WSA) [34], attack-leave optimization 

(ALO) [35], and so on. 

In general, there are some stagnations in the 

development of metaheuristics. First, many recent 

metaheuristics were built based on the swarm 

intelligence as a fundamental approach, so that some 

other approaches, such as evolutionary-based 

technique and neighborhood or local search become 

less popular. Second, many existing metaheuristics 

focus on the directed motion toward the global finest 

solution. Although this search is rational because it 

has been proven effective in many existing 

metaheuristics, the needs to introduce another 

approach is important to avoid the stagnation in the 

development of metaheuristics which may end with 

trivial refinement. Third, many swarm-based 

metaheuristics also deploy neighborhood search 

with the reduction of its local search space during 

iteration as additional search.  The stagnation of the 

neighborhood search can be investigated as the 

iteration becomes the only parameter that controls 

local search space.  

Related to this problem, this work introduces a 

novel metaheuristic that combines three branches of 

metaheuristic development called as migration-

crossover algorithm (MCA). These branches include 

swarm intelligence, evolutionary-based technique, 

and neighborhood search. The swarm intelligence is 

presented by constructing MCA based on a set of 

autonomous agents called swarm and the 

deployment of directed search called migration. The 

evolutionary-based technique is presented using 

crossover technique, which is the fundamental 

strategy in the evolutionary-based technique. 

Meanwhile, a new type of neighborhood search is 

introduced by constructing the unbalanced local 

search space to refine the diversification capability 

of neighborhood search which was originally 

designed as intensification-based search. 

The novelty and the scientific contribution of 

this proposed work are presented below. 

 

• This work provides a novel metaheuristic that 

hybridizes three fundamental branches in 

metaheuristics: swarm intelligence, evolution-

based system, and neighborhood search. 

• A new kind of neighborhood search called 

unbalanced neighborhood search is introduced 

which is different from any existing 

neighborhood search. 

• A comparative evaluation is taken to assess the 

contribution and refinement provided by MCA 

in the development of metaheuristic algorithm. 

• The single search evaluation is taken to assess 

the contribution and importance of each search 

implemented in MCA. 

 

This paper is formed as follows. Sect. 1 

describes mainly the background of this work, 

problem formulation, objective, and scientific 

contribution of the provided work. The review of 

recent development of swarm-based metaheuristic is 

taken in sect. 2. The fundamental concept, 

formulation, and formalization of the provided 

algorithm are presented in sect. 3. The evaluation 

taken to assess the performance of MCA including 

its result is presented in sect. 4. Sect. 5 presents the 

discussion regarding the more comprehensive 

investigation regarding the evaluation result, the 

linkage to the theory, computing complexity of the 

algorithm, and the limitations of this work. In the 

end, sect. 6 consolidates the conclusion and the 

proposal for future development.  

2. Related works 

Swarm intelligence is a favorite approach used 

in many recent metaheuristics. It can also be seen as 

a recent milestone in the evolution of the 

development of metaheuristics. The history of 

metaheuristics development is started with the single 

solution-based metaheuristic where the system 

consists of single solution only that attempts to find 

a finer solution during the iteration within the search 

space. In this era, neighborhood searches are the 

most common. Through neighborhood search or 

local search, the solution attempts to find a finer 

solution by tracing opportunities close to the current 

solution [36]. Simulated annealing [36] and variable 

neighborhood search have become some famous 

metaheuristics that use this approach, and they are 
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still utilized in many studies regarding the 

optimization until today.  

The second milestone is the introduction of the 

population-based metaheuristic. This approach was 

developed to overcome the weakness of single 

solution-based metaheuristic. Population-based 

metaheuristic provides faster process as it consists 

of multiple solutions so that more solutions trace the 

whole search space. Evolutionary-based technique 

becomes the important concept in this era, where 

genetic algorithm (GA) become the crown of this 

concept. GA depends on the crossover technique to 

refine the quality of recent population and mutation 

process to diversify the population and create 

alternatives to avoid local optimal entrapment [37]. 

Then, swarm intelligence becomes the next 

milestone as it can be seen as the continuity of the 

population-based metaheuristic. Different from 

evolutionary-based techniques, swarm intelligence 

transforms the population into active and 

autonomous agents that trace the whole search space 

with a certain step size or speed. Swarm intelligence 

exploits the intensive interaction among agents to 

boost its speed and provide a finer final solution 

within less iteration. Particle swarm optimization 

(PSO) is the early form of swarm intelligence that 

utilizes the global finest and local finest as its 

reference [38]. Many swarm-based metaheuristics 

were introduced after the successful introduction of 

PSO.  

The summary of recent swarm-based 

metaheuristics is presented in Table 1. This 

presentation includes their number of steps in every 

iteration, their references used in the directed search, 

the existence of crossover technique representing the 

evolutionary-based technique, and the existence of 

the neighborhood search. The last row consists of 

the provided metaheuristic to make clear positioning 

of the provided metaheuristic compared to these 

recent swarm-based metaheuristics. 
 

Table 1. The summary of recent swarm-based metaheuristics including their steps, reference, existence of the crossover, 

and existence of neighborhood search 

No Metaheuristics Steps References during Directed Search Crossover Neighborhood Search 

1 TIA [33] 1 all other agents no no 

2 MA [29] 2 a stochastically chosen finer agent no reduced local space during 

iteration 

3 COA [9] 2 global finest agents and a randomized agent 

within the space 

no reduced local space during 

iteration 

4 OOA [22] 2 a stochastically chosen agent from a pool 

consisting of all finer agents and global 

finest agent 

no reduced local space during 

iteration 

5 WaOA [7] 3 global finest agent and a stochastically 

chosen agent 

no reduced local space during 

iteration 

6 GJO [11] 1 first finest agent and second-finest agent no no 

7 POA [16] 2 a randomized agent within space no reduced local space during 

iteration 

8 GSO [30] 1 a portion of global finest agent and a portion 

of local finest agent 

no no 

9 NGO [15] 2 a stochastically chosen agent within swarm no reduced local space during 

iteration 

10 ASBO [31] 3 global finest agent, the middle between 

finest agent and worst agent, the difference 

between finest agent and worst agent 

no no 

11 GAO [6] 2  a stochastically chosen finer agent based on 

its normalized fitness and follow normal 

distribution 

no reduced local space during 

iteration 

12 ALO [35] 3 global finest agent, the middle between 

global finest agent and a stochastically 

chosen agent, and the middle between two 

stochastically chosen agents 

no no 

13 this work 3 global finest agent and two stochastically 

chosen agent 

yes reduced local space during 

iteration with unbalanced 

distance between the lower 

local boundary and higher 

local boundary. 
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The previous explanation and summary in Table 

1 reveals that there is a chance to propose a new 

metaheuristic that combines three approaches: 

swarm intelligence, evolutionary-based technique, 

and neighborhood search in a balanced manner. As 

presented in Table 1, there is dominance of the 

swarm intelligence as a fundamental approach in the 

recent metaheuristics. Table 1 also reveals the 

variety in constructing the references used in the 

directed search. Meanwhile, some swarm-based 

metaheuristics are enriched with neighborhood 

search while others focus only on the directed search. 

Unfortunately, there is stagnation in the 

neighborhood search where there is common type of 

neighborhood search where the local space shrinks 

as the iteration continues. On the other hand, 

evolutionary-based technique becomes much less 

popular as complement for the swarm-based 

metaheuristic. It makes the clear and distinct 

position and contribution for this work to provide a 

new metaheuristic that combines the swarm 

intelligence, evolutionary-based technique, and 

neighborhood search. Moreover, proposing a new 

kind of neighborhood search also becomes an 

additional contribution to this work. 

3. Model 

The fundamental concept of MCA is the 

hybridization of swarm intelligence, crossover 

technique, and neighborhood search. There are two 

characteristics of swarm intelligence adopted in 

MCA. First, MCA is constructed by a certain 

number of autonomous agents. Each agent acts 

without any central command but based on three 

considerations: set of possible actions, perception of 

the environment, and interaction with other agents. 

In MCA, there are actions that are possibly taken by 

each agent. The first action is generating a new seed 

for refinement. The second action is replacing the 

current solution with this seed. The perception of the 

environment can be interpreted by measuring the 

quality of its current solution and its reference. The 

interaction with other agents is taken by selecting 

references from other agents. Second, MCA uses 

directed search which is finding a finer solution by 

moving to a new solution within the space based on 

the direction provided by the reference. The 

crossover mechanism is adopted by combining some 

values from the current solution and some values 

from its reference to generate a new seed. It means 

that the related agent and its reference become the 

parents of the seed. MCA also performs 

neighborhood searches but with some modifications 

where the lower local search space width may be  
 

a autonomous agent 

A set of agents (swarm) 

ab global finest agent 

alo lower boundary 

allo lower local boundary 

ahi higher boundary 

alhi higher local boundary 

am the middle between two stochastically chosen 

agent 

ar a stochastically chosen agent 

D dimension 

F objective function 

α uniform floating point random number [0,1] 

β uniform integer random number [1,2] 

sc crossover seed 

sd directed search seed 

sf final seed 

t iteration 

tm maximum iteration 

U general uniform random 

x index for agent 

y index for dimension 

 

algorithm 1: pseudocode of MCA 

1 begin 

2  for x=1 to n 

3   initiate ai using Eq. (2) 

4   update ab using Eq. (3) 

5  end for 

6  for t=1 to tm 

7   for x=1 to n 

8    run 1st search using Eq. (4) to Eq. (7) 

9    run 2nd search using Eq. (8) to Eq. (13) 

10    run 3rd search using Eq. (14) to Eq. (17) 

11    update ab using Eq. (2) 

12   end for 

13  end for 

14  return ab 

15 end 

 

 

different from the upper local search space width in 

the related dimension.  

MCA uses two references during the iteration 

process. The first reference is the global finest agent. 

This reference is chosen due to its popularity as it is 

also adopted in many swarm-based metaheuristic. 

The second reference is the middle between two 

stochastically chosen agents. These two agents are 

selected from the swarm. This reference is rare to 

use as many existing metaheuristics use a 

stochastically chosen agents within the swarm. 

These references are used in the directed search and 

the crossover. 

This fundamental concept is then transformed 

into three sequential steps during the iteration. In the 

first step, each agent may perform a directed search 
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toward the global finest agent and crossover with the 

global finest agent. The finer search between these 

two searches is selected for the seed in the first step. 

In the second step, each agent may perform a 

directed search relative to the middle between two 

stochastically chosen agents and crossover with the 

middle between two stochastically chosen agents. 

The finer search between these two searches is 

selected for the seed in the second step. Then, in the 

third step, each agent performs the neighborhood 

search where the local search space shrinks during 

the search space and the local search space width is 

affected by the distance between the related agent 

and the upper and lower boundaries. 

A strict acceptance procedure is implemented in 

MCA. It means that every seed can substitute the 

current value of its parent only if this seed is finer 

than its parent. Moreover, an agent substitutes the 

value of the global finest agent only if it improves 

the global finest agent. 

This overall strategy is then converted into a 

formal algorithm. It is formalized using algorithm 1 

in pseudocode presentation. Moreover, the 

mathematical formulation to describe the algorithm 

in a more detailed manner is presented in Eq. (1) to 

Eq. (17). The notations utilized in this paper are 

presented below. 

The presentation of swarm is presented in Eq. 

(1). It can be seen as a set of autonomous agents 

with a predefined swarm size. 

  

𝐴 = {𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛}    (1) 

 

There are two processes during the initialization. 

The first process is generating an agent that follows 

a uniform distribution within the search space as 

exhibited in Eq. (2). After that, the second process is 

updating the global finest agent based on the strict 

acceptance procedure as indicated in Eq. (3). 

 

𝑎𝑥,𝑦 = 𝑎𝑙𝑜,𝑦 + 𝛼(𝑎ℎ𝑖,𝑦 − 𝑎𝑙𝑜,𝑦)   (2) 

 

𝑎𝑏′ = {
𝑎𝑥 , 𝑓(𝑎𝑥) < 𝑓(𝑎𝑏)

𝑎𝑏 , 𝑒𝑙𝑠𝑒
    (3) 

 

The first search is formulated using Eq. (4) to Eq. 

(7). Eq. (4) reveals that the first directed search seed 

is obtained based on the migration toward the global 

finest agent. Eq. (5) reveals the stochastic crossover 

process between the related agent and the global 

finest agent based on the equal opportunity to 

produce the first crossover seed. Eq. (6) reveals the 

selection used to produce the first final seed. Eq. (7) 

reveals the updating process of the related agent 

based on the first final seed. 

 

𝑠𝑑1,𝑥,𝑦 = 𝑎𝑥,𝑦 + 𝛼(𝑎𝑏,𝑦 − 𝛽𝑎𝑥,𝑦)   (4) 

 

𝑠𝑐1,𝑥,𝑦 = {
𝑎𝑏,𝑦, 𝛼 < 0.5

𝑎𝑥,𝑦, 𝑒𝑙𝑠𝑒
    (5) 

 

𝑠𝑓1,𝑥,𝑦 = {
𝑠𝑑1,𝑥,𝑦, 𝑓(𝑠𝑑1,𝑥,𝑦) < 𝑓(𝑠𝑐1,𝑥,𝑦)

𝑠𝑐1,𝑥,𝑦, 𝑒𝑙𝑠𝑒
  (6) 

 

𝑎𝑥,𝑦
′ = {

𝑠𝑓1,𝑥,𝑦, 𝑓(𝑠𝑓1,𝑥,𝑦) < 𝑓(𝑎𝑥,𝑦)

𝑎𝑥,𝑦, 𝑒𝑙𝑠𝑒
  (7) 

 

The second search is specified using Eq. (8) to 

Eq. (13). Eq. (8) reveals the random selection 

process within the swarm based on the uniform 

distribution. Eq. (9) reveals that the reference is the 

middle between two stochastically chosen agents. 

Eq. (10) reveals that the second directed search seed 

is obtained based on the migration relative to the 

middle between two stochastically chosen agents 

and its direction is calculated based on the quality 

comparison between the related agent and this 

second reference. Eq. (11) reveals the stochastic 

crossover process between the related agent and the 

second reference based on the equal opportunity to 

produce the second crossover seed. Eq. (12) reveals 

the selection used to produce the second final seed. 

Eq. (13) reveals the updating process of the related 

agent based on the second final seed. 

 

𝑎𝑟 = 𝑈(𝐴)      (8) 

 

𝑎𝑚,𝑥,𝑦 =
𝑎𝑟1,𝑦+𝑎𝑟2,𝑦

2
     (9) 

 

𝑠𝑑2,𝑥,𝑦 =  

{
𝑎𝑥,𝑦 + 𝛼(𝑎𝑚,𝑥,𝑦 − 𝛽𝑎𝑥,𝑦), 𝑓(𝑎𝑚,𝑥,𝑦) < 𝑓(𝑎𝑥,𝑦)

𝑎𝑥,𝑦 + 𝛼(𝑎𝑥,𝑦 − 𝛽𝑎𝑚,𝑥,𝑦), 𝑒𝑙𝑠𝑒
 

(10) 

 

𝑠𝑐2,𝑥,𝑦 = {
𝑎𝑚,𝑥,𝑦, 𝛼 < 0.5

𝑎𝑥,𝑦, 𝑒𝑙𝑠𝑒
               (11) 

 

𝑠𝑓2,𝑥,𝑦 = {
𝑠𝑑2,𝑥,𝑦, 𝑓(𝑠𝑑2,𝑥,𝑦) < 𝑓(𝑠𝑐2,𝑥,𝑦)

𝑠𝑐2,𝑥,𝑦, 𝑒𝑙𝑠𝑒
     (12) 

 

𝑎𝑥,𝑦
′ = {

𝑠𝑓2,𝑥,𝑦, 𝑓(𝑠𝑓2,𝑥,𝑦) < 𝑓(𝑎𝑥,𝑦)

𝑎𝑥,𝑦, 𝑒𝑙𝑠𝑒
             (13) 

 

The third search is formalized using Eq. (14) to 

Eq. (17). Eq. (14) is used to calculate the lower local 
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boundary. Eq. (15) is used to calculate the higher 

local boundary. Eq. (16) reveals that the third final 

seed is generated uniformly between the lower local 

boundary and the higher local boundary. Eq. (17) 

reveals the updating process of the related agent 

based on the second final seed. 

 

𝑎𝑙𝑙𝑜,𝑥,𝑦 = 𝑎𝑙𝑜,𝑦 +
𝑡

𝑡𝑚
(𝑎𝑥,𝑦 − 𝑎𝑙𝑜,𝑦)              (14)  

 

𝑎𝑙ℎ𝑖,𝑥,𝑦 = 𝑎𝑥,𝑦 + (1 −
𝑡

𝑡𝑚
) (𝑎ℎ𝑖,𝑦 − 𝑎𝑥,𝑦)    (15) 

 

𝑠𝑓3,𝑥,𝑦 = 𝑎𝑙𝑙𝑜,𝑥,𝑦 + 𝛼(𝑎𝑙ℎ𝑖,𝑥,𝑦 − 𝑎𝑙𝑙𝑜,𝑥,𝑦)       (16) 

 

𝑎𝑥,𝑦
′ = {

𝑠𝑓3,𝑥,𝑦, 𝑓(𝑠𝑓3,𝑥,𝑦) < 𝑓(𝑎𝑥,𝑦)

𝑎𝑥,𝑦, 𝑒𝑙𝑠𝑒
             (17) 

4. Simulation and result 

This section discusses the investigation 

conducted to assess the performance of MCA. There 

are two investigations in this work. The first 

investigation is the comparative evaluation whose 

objective is to assess the performance of MCA 

compared with the other metaheuristics. The second 

evaluation is the single search evaluation whose 

objective is to measure the performance of each 

search constructing the MCA. Comparative 

evaluation is important to measure the refinement of 

the MCA relative to the existing techniques. 

Moreover, the comparative evaluation is necessary 

to analyze the strengths and weaknesses of the MCA. 

On the other hand, the single search evaluation is 

needed to measure the contribution of each search in 

MCA since MCA is a multiple search metaheuristic.  

The set consisting of 23 functions is used as the 

problem in both evaluations. This set of functions is 

chosen due to its coverage. It covers both unimodal 

and multimodal problems as it consists of seven 

high dimension unimodal (HDU) functions (F1 to 

F7), six high dimension multimodal (HDM) 

functions (F8 to F13), and ten fixed dimension 

multimodal (FDM) functions (F14 to F23). The 

main consideration of the unimodal functions is 

finding the global optimal as fast as possible as each 

function consists of single optimal solution. On the 

other hand, the main consideration of multimodal 

functions is avoiding the local optimal entrapment 

as each function consists of multiple optimal 

solutions but only one global optimal. This set of 

functions also covers various search spaces. Some 

functions have narrow search space while some 

other functions have large search space. The terrain 

of the functions also varied from smooth descent, 

wavy, and flat with very narrow slopes. Due to the 

character variety of the functions in this set, this set 

of functions has been used as theoretical problem 

during the assessment of many studies introducing 

new metaheuristics, such as KMA, TIA, GSO, ALO, 

and so on. A detailed description of this set of 

functions can be found in Table 2. 

The MCA is compared with five new 

metaheuristics in the comparative evaluation. These 

metaheuristics are TIA, OOA, MA, COA, and 

WaOA. All these metaheuristics are new as they are 

introduced in 2023. TIA is the only comparator that 

adopts a single search strategy which is interaction 

with all other agents [33]. On the other hand, OOA 

[22], MA [29], COA [9], and WaOA [7] adopt 

multiple search strategies. These four comparators 

also deploy neighborhood search with reduction of 

the local space during the iteration. The other reason 

of choosing these five metaheuristics as comparators 

is the fact that they do not have any adjusted 

parameters except the swarm size and maximum 

iteration. This circumstance is chosen to make fair 

comparison because all these comparators will 

always be in their default settings. 

In the comparative evaluation, there are only two 

independent parameters: the swarm size and the 

maximum iteration. In this work, the swarm size is 

set to 5 while the maximum iteration is set to 10. It 

means all the metaheuristics in this evaluation 

including MCA and its comparators are pushed to 

find the optimal solution quickly. The results are 

presented in Table 3 to Table 5 representing the 

HDU, HDM, and FDM functions respectively. 

There are three parameters presented in Table 3 to 

Table 5: mean, standard deviation, and the mean-

based rank. Then, this result is summarized in Table 

6 representing the superiority of MCA compared to 

its comparators in every group of functions based on 

the average fitness score (mean). 

Table 3 reveals the superiority of MCA in 

overcoming the HDU functions. MCA becomes the 

finest performer in all functions in all seven HDU 

functions. MCA becomes the sole finest performer 

in six HDU functions (F1, F3, F4, F5, F6, and F7). 

Meanwhile, MCA is not the only metaheuristics that 

can find the global optimal in solving F2. Four 

comparators including OOA, MA, COA, and WaOA 

also perform as well as MCA in this function. The 

performance difference between MCA as the finest 

performer with the worst performer in solving HDU 

functions is wide except in F3. This result also 

demonstrates that MCA can perform well in 

functions with narrow search space such as F7 to the 

functions with large search space such as F1. 
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Table 2. Detail description of the set of 23 functions 

No Function Model Dim Space Target 

1 Sphere ∑ 𝑥𝑖
2𝑑

𝑖=1   70 [-100, 100] 0 

2 Schwefel 2.22 ∑ |𝑥𝑖|
𝑑
𝑖=1 + ∏ |𝑥𝑖|

𝑑
𝑖=1   70 [-100, 100] 0 

3 Schwefel 1.2 ∑ (∑ 𝑥𝑗
𝑖
𝑗=1 )

2𝑑
𝑖=1   70 [-100, 100] 0 

4 Schwefel 2.21 max{|𝑥𝑖|, 1 ≤ 𝑖 ≤ 𝑑}  70 [-100, 100] 0 

5 Rosenbrock ∑ (100(𝑥𝑖+1 + 𝑥𝑖
2)2 + (𝑥𝑖 − 1)2)𝑑−1

𝑖=1   70 [-30, 30] 0 

6 Step ∑ (𝑥𝑖 + 0.5)2𝑑−1
𝑖=1   70 [-100, 100] 0 

7 Quartic ∑ 𝑖𝑑
𝑖=1 𝑥𝑖

4 + 𝑟𝑎𝑛𝑑𝑜𝑚 [0,1]  70 [-1.28, 1.28] 0 

8 Schwefel ∑ −𝑥𝑖 sin(√|𝑥𝑖|)𝑑
𝑖=1   70 [-500, 500] -2.9327x104 

9 Ratsrigin 10𝑑 + ∑ (𝑥𝑖
2 − 10𝑐𝑜𝑠(2𝜋𝑥𝑖))𝑑

𝑖=1   70 [-5.12, 5.12] 0 

10 Ackley 
−20 ⋅ 𝑒𝑥𝑝 (−0.2 ⋅ √

1

𝑑
∑ 𝑥𝑖

2𝑑
𝑖=1 ) −

𝑒𝑥𝑝 (
1

𝑑
∑ cos 2𝜋𝑥𝑖

𝑑
𝑖=1 ) + 20 + 𝑒𝑥𝑝(1)  

70 

[-32, 32] 0 

11 Griewank 
1

4000
∑ 𝑥𝑖

2𝑑
𝑖=1 − ∏ 𝑐𝑜𝑠 (

𝑥𝑖

√𝑖
)𝑑

𝑖=1 +1 70 [-600, 600] 0 

12 Penalized 

𝜋

𝑑
{10 sin(𝜋𝑦1) + ∑ ((𝑦𝑖 − 1)2(1 +𝑑−1

𝑖=1

10 𝑠𝑖𝑛2(𝜋𝑦𝑖+1))) + (𝑦𝑑 − 1)2} + ∑ 𝑢(𝑥𝑖 , 10,100,4)𝑑
𝑖=1   

70 

[-50, 50] 0 

13 Penalized 2 

0.1 {𝑠𝑖𝑛2(3𝜋𝑥1) + ∑ ((𝑥𝑖 − 1)2(1 +𝑑−1
𝑖=1

𝑠𝑖𝑛2(3𝜋𝑥𝑖+1))) + (𝑥𝑑 − 1)2(1 + 𝑠𝑖𝑛2(2𝜋𝑥𝑑))} +

∑ 𝑢(𝑥𝑖 , 5,100,4)𝑑
𝑖=1   

70 

[-50, 50] 0 

14 
Shekel 
Foxholes (

1

500
+ ∑

1

𝑗+∑ (𝑥𝑖−𝑎𝑖𝑗)
62

𝑖=1

25
𝑗=1 )

−1

  2 [-65, 65] 1 

15 Kowalik ∑ (𝑎𝑖 −
𝑥1(𝑏𝑖

2+𝑏𝑖𝑥2)

𝑏𝑖
2+𝑏𝑖𝑥3+𝑥4

)
2

11
𝑖=1   4 [-5, 5] 0.0003 

16 
Six Hump 
Camel 

4𝑥1
2 − 2.1𝑥1

4 +
1

3
𝑥1

6 + 𝑥1𝑥2 − 4𝑥2
2 + 4𝑥2

4  2 [-5, 5] -1.0316 

17 Branin (𝑥2 −
5.1

4𝜋2 𝑥1
2 +

5

𝜋
𝑥1 − 6)

2

+ 10 (1 −
1

8𝜋
) cos(𝑥1) + 10  2 [-5, 5] 0.398 

18 
Goldstein-
Price 

(1 + (𝑥1 + 𝑥2 + 1)2(19 − 14𝑥1 + 3𝑥1
2 − 14𝑥2 +

6𝑥1𝑥2 + 3𝑥2
2)). (30 + (2𝑥1 − 3𝑥2)2(18 − 32𝑥1 +

12𝑥1
2 + 48𝑥2 − 36𝑥1𝑥2 + 27𝑥2

2))  

2 [-2, 2] 3 

19 Hartman 3 − ∑ (𝑐𝑖𝑒𝑥𝑝 (− ∑ (𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)
2

)𝑑
𝑗=1 ))4

𝑖=1   3 [1, 3] -3.86 

20 Hartman 6 − ∑ (𝑐𝑖𝑒𝑥𝑝 (− ∑ (𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)
2

)𝑑
𝑗=1 ))4

𝑖=1   
6 

[0, 1] -3.32 

21 Shekel 5 − ∑ (∑ (𝑥𝑗 − 𝑐𝑗𝑖)
2

+ 𝛽𝑖
𝑑
𝑗=1 )

−1
5
𝑖=1   

4 [0, 10] -10.1532 

22 Shekel 7 − ∑ (∑ (𝑥𝑗 − 𝑐𝑗𝑖)
2

+ 𝛽𝑖
𝑑
𝑗=1 )

−1
7
𝑖=1   

4 [0, 10] -10.4028 

23 Shekel 10 − ∑ (∑ (𝑥𝑗 − 𝑐𝑗𝑖)
2

+ 𝛽𝑖
𝑑
𝑗=1 )

−1
10
𝑖=1    

4 [0, 10] -10.5363 
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Table 3. Assessment result in solving HDU functions 

F Parameter TIA [33] OOA [22] MA [29] COA [9] WaOA [7] MCA 

1 mean 7.8639x101 3.7860x102 2.5961x101 1.3487x103 1.1957x101 2.1165 

std deviation 2.3505x101 1.2591x102 1.2859x101 4.0334x102 1.1914x101 1.3578 

mean rank 4 5 3 6 2 1 

2 mean 1.4056x1079 0.0000 0.0000 0.0000 0.0000 0.0000 

std deviation 6.4410x1079 0.0000 0.0000 0.0000 0.0000 0.0000 

mean rank 6 1 1 1 1 1 

3 mean 1.2872x104 5.0540x104 4.4257x104 6.4490x104 1.4346x104 8.8824x103 

std deviation 8.7148x103 3.0795x104 2.8755x104 3.6292x104 1.5287x104 5.4592x103 

mean rank 2 5 4 6 3 1 

4 mean 6.4029 1.7076x101 2.6616x101 3.4435x101 3.9455 2.1407 

std deviation 1.4432 6.3579 3.5162x101 1.2478x101 2.4903 1.0932 

mean rank 3 4 5 6 2 1 

5 mean 1.6571x103 2.3965x104 5.8101x102 3.1608x105 3.1066x102 9.4781x101 

std deviation 6.7199x102 2.1067x104 5.2350x102 2.4683x105 3.1363x102 1.1948x101 

mean rank 4 5 3 6 2 1 

6 mean 7.3895x101 3.2598x102 3.9857x101 1.2761x103 3.1030x101 1.7666x101 

std deviation 3.7860x101 9.7956x101 1.4545x101 5.2891x102 1.1322x101 1.5908 

mean rank 4 5 3 6 2 1 

7 mean 0.0974 0.2071 0.0685 0.5529 0.0691 0.0600 

std deviation 0.0518 0.0912 0.0410 0.3054 0.0491 0.0293 

mean rank 4 5 2 6 3 1 

 
Table 4. Assessment results in solving HDM functions 

F Parameter TIA [33] OOA [22] MA [29] COA [9] WaOA [7] MCA 

8 mean -2.5450x103 -3.7552x103 -4.1177x103 -4.5380x103 -3.9554x103 -7.0310x103 

std deviation 6.3078x102 6.7701x102 7.6943x102 8.6187x102 5.6751x102 8.5423x102 

mean rank 6 5 3 2 4 1 

9 mean 1.2584x102 2.1672x102 3.8172x101 2.0248x102 1.6866x101 8.7556x101 

std deviation 4.6024x101 9.5589x101 2.1689x101 5.0751x101 2.2996x101 7.8962x101 

mean rank 4 6 1 5 2 3 

10 mean 2.4081 4.2481 2.6111 6.5991 1.0024 0.3763 

std deviation 0.2794 0.3914 3.8286 1.0143 0.3197 0.1449 

mean rank 3 5 4 6 2 1 

11 mean 1.6624 4.6119 1.1855 1.6505x101 0.8747 0.3802 

std deviation 0.1796 1.7679 0.2506 7.6192 0.3085 0.2533 

mean rank 4 5 3 6 2 1 

12 mean 1.5426 4.5441 1.3821 2.0672x103 1.2140 1.0289 

std deviation 0.3277 1.6810 0.2194 5.8857x103 0.1539 0.1573 

mean rank 4 5 3 6 2 1 

13 mean 6.0742 2.8223x102 4.9990 1.5059x105 4.0211 3.6486 

std deviation 1.0181 6.6558x102 0.8645 2.4455x105 0.2799 0.2952 

mean rank 4 5 3 6 2 1 

 

 

Table 4 reveals the superiority of MCA in 

overcoming the HDM functions. MCA performs as 

the finest performer in five functions (F8, F10, F11, 

F12, and F13). Meanwhile, MCA is the on the third 

rank in solving F9 where MA and WaOA perform 

finer. The performance difference between the finest 

performer and the worst performer is wide in four 

functions (F10, F11, F12, and F13). Meanwhile, the 

performance difference between the finest and worst 

performers is narrow in F8 and F9. This result also 

indicates the superiority of MCA in solving 

problems with problem space from moderate to very 

large. 

Table 5 reveals that MCA keeps maintaining its 

superiority in overcoming the FDM functions. MCA 

becomes the finest performer in six functions (F14, 

F19, F20, F21, F22, and F23). Meanwhile, MCA is 

on the second, third, fourth, and sixth ranks in 

solving F18, F17, F16, and F15 respectively. Table 

5 also presents the fierce competition among these 

metaheuristics as the performance difference 

between the finest and worst performers in the FDM  
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Table 5. Assessment results in solving FDM functions 

F Parameter TIA [33] OOA [22] MA [29] COA [9] WaOA [7] MCA 

14 mean 1.1703x101 1.0635x101 1.1772x101 9.5474 1.0403x101 8.5000 

std deviation 3.5754 3.4058 4.3150 4.2096 4.0650 4.0939 

mean rank 5 4 6 2 3 1 

15 mean 0.0089 0.0150 0.0100 0.0116 0.0040 0.0184 

std deviation 0.0150 0.0276 0.0166 0.0110 0.0064 0.0225 

mean rank 2 5 3 4 1 6 

16 mean -1.0096 -1.0104 -1.0037 -0.9862 -1.0282 -1.0074 

std deviation 0.0309 0.0257 0.0377 0.1489 0.0054 0.0654 

mean rank 3 2 5 6 1 4 

17 mean 1.4541 0.4486 0.4135 0.5322 0.4255 0.4361 

std deviation 1.5878 0.0677 0.0183 0.3386 0.0691 0.0719 

mean rank 6 4 1 5 2 3 

18 mean 2.5456x101 8.2285 4.0948 1.3085x101 2.4068x101 6.9367 

std deviation 2.9053x101 1.8180x101 3.6014 2.1243x101 2.2121x101 9.2343 

mean rank 6 3 1 4 5 2 

19 mean -0.0495 -0.0495 -0.0495 -0.0495 -0.0495 -0.0495 

std deviation 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

mean rank 1 1 1 1 1 1 

20 mean -2.3429 -2.8659 -3.0598 -2.6866 -2.8492 -3.1935 

std deviation 0.3027 0.2352 0.1111 0.3585 0.2824 0.0956 

mean rank 6 3 2 5 4 1 

21 mean -1.6499 -1.7264 -2.9784 -2.1022 -1.4426 -4.2774 

std deviation 0.9179 0.9996 1.3144 0.3585 0.70006 2.1163 

mean rank 5 4 2 3 6 1 

22 mean -1.6241 -1.7943 -2.7443 -2.0167 -2.1611 -4.8805 

std deviation 0.9227 0.6339 0.9200 0.9322 1.4306 2.0506 

mean rank 6 5 2 4 3 1 

23 mean -1.8202 -1.9911 -3.1775 -2.4700 -2.1356 -4.0106 

std deviation 0.7988 0.7311 1.1947 1.1486 0.8634 2.2060 

mean rank 6 5 2 3 4 1 

 

 
Table 6. Superiority of MCA based on the group of 

functions 

Group Number of Functions in Every Group Where 

MCA is Finer 

TIA 

[33] 

OOA 

[22] 

MA 

[29] 

COA 

[9] 

WaOA 

[7] 

1 7 6 6 6 6 

2 6 6 5 6 5 

3 7 7 6 8 6 

Total 20 19 17 20 17 

 

 

functions is narrow and this circumstance is applied 

to all ten functions in this group. 

Table 6 resumes the superiority of MCA 

compared to all its comparators in all group of 

functions. Overall, MCA is finer than TIA, OOA, 

MA, COA, and WaOA in 20, 19, 17, 20, and 17 

functions. As OOA, MA, COA, and WaOA also 

become the finest performer in F2 and all 

metaheuristics in this evaluation create same result 

in F19, it means that MCA is worse than TIA, OOA, 

MA, COA, and WaOA in only 2, 2, 4, 1, and 4 

functions respectively. This evaluation reveals that 

MA and WaOA are comparators that the most 

difficult to beat. As MCA is worse only in a few 

functions, it reveals that the refinement of MCA 

relative to the existing metaheuristics is significant. 

In the second evaluation, each search in MCA is 

assessed individually. As MCA consists of three 

sequential steps then there are three individual 

searches evaluated in this evaluation. The average 

fitness score becomes the only parameter evaluated 

in this second evaluation. The result is exhibited in 

Table 7. The finest result in each function is written 

in bold font.  

Table 7 exhibits the significance of the first 

search. This first search creates the finest result in 

14 functions. Meanwhile, the second search 

becomes the second-finest search as it creates the 

finest result in nine functions. Then the least 

significant contribution is provided by the third 

search as it produces the finest result in two 

functions. Meanwhile, all searches can find the 

optimal solution in F2. On the other hand, the first  
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Table 7. Result of individual search 

F Average Fitness Score 

1st Search 2nd Search 3rd Search 

1 1.9386x102 4.7470x102 3.2003x104 

2 0.0000 0.0000 0.0000 

3 3.6278x104 4.8706x104 1.7334x105 

4 1.4194x101 1.6887x101 5.2272x101 

5 1.1554x104 2.7453x104 3.2941x107 

6 1.9377x102 5.0243x102 3.0776x104 

7 0.1777 0.2768 3.3780x101 

8 -5.4171x103 -4.5454x103 -3.1654x103 

9 2.1127x102 5.1916x102 7.2474x102 

10 3.5097 4.4463 1.6658x101 

11 2.9081 5.3373 2.8343x102 

12 2.8619 5.2167 1.6658x107 

13 1.4587x101 6.0812x102 7.3509x107 

14 1.1507x101 9.9197 4.0983x101 

15 0.0364 0.0128 0.0476 

16 -0.8560 -1.0194 -0.6972 

17 6.0931 1.6640 1.3381 

18 2.2583x101 2.1386x101 1.5542x101 

19 -0.0495 -0.0495 -0.0005 

20 -2.4141 -2.6681 -2.0291 

21 -1.4660 -2.2742 -1.3143 

22 -2.0362 -3.0268 -1.7059 

23 -1.6770 -2.5207 -1.6665 

 

 

and second searches perform equally in F19. By 

eliminating these two functions, the first search is 

dominant in the high dimension functions while the 

second search is dominant in the fixed dimension 

functions. 

5. Discussion 

The in-depth investigation can be started with 

the performance analysis based on the characteristic 

of the functions. The HDU functions are used to 

measure the intensification capability as they have 

only one global optimal [29]. On the other hand, the 

HDM functions are used to measure the 

diversification capability since they have multiple 

optimal solutions [29]. Meanwhile, the FDM 

functions have fewer optimal solutions, but their 

terrain is ambiguous. In some functions, the terrain 

is commonly flat with very narrow holes for the 

optimal solutions. The FDM functions are used to 

investigate the balance between the diversification 

and intensification capability [29].  

Based on the previous explanation and the 

superiority of MCA in all groups of functions, MCA 

is proven as a complete metaheuristic. Its 

intensification and diversification capabilities are 

good. Moreover, it has balancing capability between 

the intensification and diversification as it is 

superior in the third group of functions. As the 

difference between the first step and the second step 

is on the reference as each step utilizes the directed 

search and crossover technique, it can be said that 

the global finest solution is the suitable reference to 

handle the high dimension functions. On the other 

hand, the middle between two stochastically 

selected solutions is suitable to handle fixed 

dimension multimodal functions. 

The result of the comparative evaluation reveals 

that the hybridization of the swarm intelligence and 

crossover technique provides finer result. All the 

comparators deploy directed search which is the 

fundamental search in the swarm intelligence. 

Meanwhile, TIA is the only comparators that does 

not deploy neighbourhood search. Meanwhile none 

of the comparators deploy crossover technique. 

This investigation is strengthened by the fact 

that WaOA and COA have a closer relationship with 

MCA rather than the other comparators. Both 

comparators deploy three searches. Two searches 

are directed search while the third search is 

neighbourhood search with reduction of the local 

space as iteration increases. The first difference 

between these two comparators is the number of 

steps during the iteration. There are three steps in 

WaoA while COA contains only two steps. 

Although both comparators deploy the directed 

search toward the finest solution and relative to a 

stochastically selected solution, the mechanism is 

different, and it becomes the second difference. In 

WaOA, the directed search toward the finest 

solution is conducted in a dedicated step but the 

probability of the finest solution is selected as 

reference is not absolute because the other finer 

solution also has chance to be selected as reference 

in this step. Meanwhile, the directed search relative 

to a stochastically selected solution is performed in a 

dedicated step. On the other hand, in COA, the 

directed search toward the finest solution and 

relative to a stochastically selected solution is 

performed in a dedicated step [29]. The first half of 

swarm performs the first directed search while the 

second half of swarm performs the second directed 

search. The fourth difference is that the pool used to 

select a solution stochastically. In WaoA, this 

random solution is selected among the population of 

the swarm [7]. On the other hand, in COA, the 

random solution is generated within the entire space 

[29]. 

The result of the single search evaluation 

exposes the importance of the reference used in the 

searching process. Both directed search and 

crossover-based search use reference. On the other 

hand, there is no reference used in the 
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neighbourhood search. Although the neighbourhood 

search is proven superior in solving branin and 

goldstein-price, the neighbourhood search is 

superior in only two functions while the other 

searches are superior in many more functions. 

The investigation regarding the computing 

complexity can be traced based on the number of 

loops used in MCA. In the initialization phase, its 

complexity can be presented as O(n(A).n(D)). This 

presentation means that the complexity during the 

initialization is equivalent to the swarm size or the 

number of decision variables. Meanwhile, in the 

iteration phase, its complexity can be presented as 

O(3tm.n(A).n(D)). This presentation means that the 

complexity during the iteration phase is equivalent 

to the maximum iteration, swarm size, and the 

number of decision variables. 

There are limitations in this work, especially the 

provided MCA despite its superior performance. 

First, the contribution of the neighbourhood search 

performed in the third step is not as significant as 

the combination of directed search and crossover 

technique performed in the first and second steps. 

Second, there are only five metaheuristics used as 

comparators in this work because it is impossible 

and not operable to investigate the performance of 

MCA with too many comparators. Third, there are a 

lot of techniques and stochastic distributions that 

already exist, but it is also impossible to 

accommodate too many techniques or stochastic 

distributions in a single metaheuristic. Fourth, there 

are also several other sets of functions, and a lot of 

practical problems can be used as use case to 

investigate the performance of MCA more 

comprehensively. These limitations can be used as 

baseline for further development by accommodating 

more but selected additional techniques and utilizing 

many practical problems as use cases to enrich the 

investigation of MCA.  

6. Conclusion 

This work presents a new metaheuristic called as 

migration-crossover algorithm (MCA). As the name 

suggests, MCA is swarm-based metaheuristic 

enriched with the crossover technique which is the 

fundamental search in the evolution-based 

metaheuristic and the neighborhood search which is 

the fundamental search in many single solution-

based metaheuristic. This paper also presents the 

novelty of MCA in the equal opportunity between 

the directed search and the crossover technique in its 

first and second steps; and the unbalanced search 

space during the neighborhood search performed in 

the third step. Two evaluations have also been 

presented in this paper, including the comparative 

evaluation and single search evaluation. The result 

of the comparative evaluation exhibits the 

superiority of MCA over its comparators by being 

finer than TIA, OOA, MA, COA, and WaOA in 20, 

19, 17, 20 and 17 functions respectively. On the 

other hand, the result of the single search evaluation 

exhibits the dominant contribution of the global 

finest solution in overcoming the high dimension 

functions and the middle of two stochastically 

selected solutions in overcoming the fixed 

dimension functions. 

The hybridization between the swarm 

intelligence and evolutionary based technique can be 

used as inspiration for future development of 

metaheuristic. Many derivatives of swarm 

intelligence and evolutionary based techniques have 

not been explored yet. Moreover, there is a 

challenge to modify the neighborhood search to 

make it competitive again compared to the swarm 

intelligence or evolutionary based technique. 

Moreover, the practical use cases whether they are 

engineering, or non-engineering problems are 

important to use to evaluate the MCA more 

comprehensively. 
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