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Abstract: The escalating demand for accessible, effective, and precise healthcare solutions has driven extensive 

research into integrating artificial intelligence into the medical field. Recognizing intricate patterns within biomedical 

images remains a formidable challenge for human practitioners. In response to this, our study introduces a pioneering 

image enhancement paradigm, the stationary wavelet channel fusion filtered (SWCFF) algorithm. Additionally, we 

employ the invariant scattering network (ISN), a novel feature learning methodology to analyze leukocyte images. The 

novelty of our approach lies in the inventive combination of SWCFF and ISN for enhanced feature extraction and 

discrimination of leukocytes. Our investigation aims to assess the efficacy of automatically extracted features from 

this algorithm in differentiating leukocytes, leveraging a support vector machine (SVM) classifier for the diagnosis 

and detection of leukemia and other blood-related conditions. The proposed model is rigorously evaluated on four 

benchmark datasets: ALLIDB, C_NMC, BCCD, and LISC. Notably, the ALLIDB binary class achieves a peak 

accuracy of 96.15% (95% CI: 0.9 to 1), while the class accuracy for neutrophils reaches an impressive 97.96% (95% 

CI: 0.89 to 1), accompanied by a precision of 100% and a false positive rate of 0%. Our innovative approach holds 

promise for the deployment of a cost-effective computer-aided diagnosis (CAD) tool in rural settings, aiding physicians 

in early disease prediction and the timely monitoring of treatment. 

Keywords: Acute lymphoblastic leukemia, Image fusion, Leukocyte, Machine learning, Support vector machine, 

Wavelet scattering network. 

 

 

1. Introduction 

The analysis of blood cells serves as a crucial 

diagnostic tool, providing insights into human health 

conditions and has been a focus of research for 

several decades. The intricate process of blood cell 

development, marked by gradual transformations 

from early stem cells, underscores the complexity of 

physiological processes within the human body. 

Traditionally, the classification of these 

transformations into healthy and malign types, or 

their constituent components, requires the expertise 

of highly trained haematologists. Traditional 

methodologies, heavily reliant on manual labour and 

expertise, often struggle to provide timely and 

accurate diagnoses. The complexities of blood cell 

development and the need for precise classification 

pose significant hurdles for haematologists. 

Additionally, the demand for enhanced diagnostic 

accuracy, streamlined laboratory processes, and the 

potential for expedited healthcare decision-making 

has prompted the exploration of advanced automated 

solutions.  

The integration of artificial intelligence (AI) 

technology has brought about significant changes in 

the healthcare sector, particularly in improving 

diagnostic precision and optimizing workflow 

efficiency. AI has introduced automated assistance in 

diagnostics, expanded clinical operations, and 

implemented quantifiable imaging techniques. 

In response to the need for early identification and 

precise diagnosis of illnesses, and to address the 

challenges related to the intricate analysis of 
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leukocyte images, many approaches incorporating 

data science and computer vision are proposed in the 

literature. The algorithms are designed to receive 

leukocyte images as input which undergo a 

predefined mathematical operation, yielding an 

output that reflects the patient's health condition. The 

image acquisition approach, illumination, staining 

artefacts, class imbalance, dataset insufficiency, 

similar appearance of class images, and varying 

maturity levels of leukocyte cells throw many 

unsolved issues into the analysis of these images. 

This study proposes a leukocyte discrimination 

approach based on an invariant scattering network 

(ISN) or wavelet scattering network (WSN) that is 

analogous to a deep CNN with fixed filter weights at 

extremely low model complexity and execution time. 

The novel features of this approach include the 

incorporation of the stationary wavelet channel 

fusion filtered (SWCFF) algorithm for image 

enhancement and the utilization of the invariant 

scattering network (ISN) for robust feature extraction. 

This proposed system goes beyond conventional 

methodologies in biomedical image processing and 

machine learning. Leveraging the SWCFF algorithm 

enhances leukocyte images, preserving key details 

crucial for accurate analysis. Simultaneously, the ISN 

facilitates advanced feature learning, contributing to 

improved discrimination of leukocytes. The main 

advantages of this approach include enhanced 

diagnostic accuracy, reduced reliance on extensive 

manual labor, and the potential for expedited 

healthcare decision-making. 

Through rigorous evaluation on benchmark 

datasets (ALLIDB, C_NMC, BCCD, and LISC), the 

proposed approach demonstrates superior results, 

achieving significant improvements in binary 

classification accuracy and outstanding accuracy for 

specific cell types. Precision rates and false positive 

rates further underscore the robustness of the 

proposed model. In summary, this innovative system 

showcases advancements in image enhancement and 

feature extraction, leading to unparalleled results 

with significant advantages over existing 

methodologies. 

This paper is organized into five sections. Section 

2 contains a comprehensive literature review 

covering the current research. Section 3 details the 

materials and methods employed in the research 

paper. Section 4 reports the results from extensive 

MATLAB-based simulations. Finally, in section 5, 

the paper concludes by summarizing key findings, 

emphasizing the methodology's significance, and 

discussing potential future research directions. 

 

2. Literature review 

The current medical routine for disease diagnosis 

relies on standard laboratory test results that are 

carried out instantly. Some of the usual tests are a 

complete blood cell count (counting the number of 

erythrocytes, leukocytes, and thrombocytes) and a 

differential blood cell count (counting the number of 

types of leukocytes: eosinophils, basophils, 

neutrophils, lymphocytes, and monocytes). To 

understand why automation of the leukocyte 

differential count is needed, it’s important to know 

the traditional approach. A drop of blood (usually 

10mm3) is stained with some dye and spread over a 

glass slide for observation under the microscope. 

Expert pathologists validate the cells and their count 

manually [1, 2].  

The automatic hematology instruments or 

machines currently accessible recognize and count 

five types of leukocytes using direct current, laser 

technology, and different blood smear slide staining 

techniques [3, 4]. These analyzers are insensitive in 

identifying immature, blast, or abnormal cells [5]. 

Hence, frequently, analyzers flag the samples with 

cell populations, suggesting the demand for 

peripheral smear examinations by skilled personnel 

to identify the anomalous cells. Apart from these, 

hematology analyzers are also subjective to various 

clinical conditions, such as the analyzer’s optical and 

electronic adjustments, preanalytical storage 

circumstances, lab technician skills, and awareness 

about the capabilities of analyzers [6]. This led to the 

emergence of computer vision and image processing 

(IP)-based techniques for the detection and 

discrimination of leukocytes in peripheral 

microscopic blood smear images. 

A texture feature classification approach was 

proposed using a discrete orthonormal S transform 

model [7]. The features extracted from this model 

were used to train random forest [8] classifiers on the 

acute lymphoblastic leukemia image database 

(ALLIDB) [9]. A hybrid model was built with a 

monogenic wavelet scattering network: a cascade 

network of wavelet filters with nonlinear modulus 

and low-pass averaging operators [10, 11]. A 

traditional ML-based segmentation and classification 

model with new color features was proposed by [12] 

trying to address the difficulty in segmenting the 

cytoplasm of the cells. Three datasets: the Raabin 

white blood cell dataset (RWBCD), leukocyte images 

for segmentation and classification (LISC), and the 

blood cell count dataset (BCCD) were used to 

validate the method. An intelligent classification 

approach using an Elman neural network was put 

forth [13] to classify healthy and unhealthy cells. The 
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network used various wavelet functions at different 

hidden layers to increase generalization and search 

space compared to a simple neural network. An 

effective classification approach was proposed using 

ResNeXt [14] and a convolutional neural network 

(CNN) [15] with squeeze and excitation modules. 

The method was validated on the C_NMC [16] online 

challenge dataset. A finer classification model was 

built using a residual neural network to mitigate the 

challenges of distinct feature extraction and the 

inefficiency of handling fine-grained cases of 

classification. This approach used 100,000 labelled 

cell images of 40 different types. Leukemia and its 

four types, classification was presented [17] using 

deep CNN along with 7 different transformations 

(rotation, width shift, height shift, vertical flip, 

horizontal flip, shearing, and zoom) applied to 

augment the small datasets like ALLIDB and the 

American Society of Hematology bank.  

Several challenges do exist in the leukocyte 

images that can adversely affect classification 

performance: sample similarity between various 

classes, dataset imbalance, sample insufficiency, 

illumination, and acquisition arteifacts to mention a 

few. A few of these issues were addressed by Hua 

Chen [18], who identified the advantage of 

combining two CNN models: Dense net and resnet 

along with spatial and channel attention modules 

(SAM and CAM). SAM identifies pixels of 

importance, and CAM [19] extracts crucial features 

from SAM pixels. The combined effect of SCAM 

takes care of sample similarity. Data augmentation 

was also performed to address insufficiencies in the 

dataset. The generalizability of the model can be 

improved by mixing up different class images that 

share common background pixels. The limitation of 

this model was its inability to focus on a loss function 

that can affect the tradeoff between interclass and 

intraclass variations. The implementation was carried 

out on a complex NVIDIA Titan Xp 12-gigabyte 

GPU.  

A transfer learning approach by Erdal Basaran 

[20] was implemented by extracting discriminative 

features from the CNN squeeze net. The features 

were identified by the local interpretable model 

agnostic explanation (LIME) algorithm. LIME was 

developed to visualize areas contributing to 

classification scores. The minimum redundancy 

maximum relevance (mRMR) feature selection mode, 

subsets highly differentiable features and aids in 

reducing the feature space. To classify leukocyte 

types in low-resolution and noisy images, Xufeng 

Yao proposed a transfer learning-based classification 

model known as two-DCNN (two-module weighted 

optimized deformable CNN) [21]. The CNN image 

net was used to train good-quality images, and then 

the weights were moved to the second module to train 

low-quality and low-resolution images. A 

combination of the Gabor filter operator and CNN 

kernels was proposed [22], in which extracted 

features were more feasible and classifiable as the 

model transformed CNN kernels into a recurrence 

area that helped features learn various frequencies 

and directions. 

Drawbacks of state of the art techniques are as 

follows: 

• Manual blood smear examination [1, 2]: The 

traditional approach of manually staining blood 

smears and validating cell counts under a 

microscope is labor-intensive, time-consuming, 

and highly dependent on the expertise of 

pathologists. It lacks scalability and introduces 

subjectivity in cell identification, impacting the 

efficiency of the diagnostic process. 

• Automatic hematology instruments [3, 4, 5]: 

Current automatic hematology instruments, 

while recognizing and counting five types of 

leukocytes, exhibit insensitivity to immature, 

blast, or abnormal cells. This limitation 

necessitates additional peripheral smear 

examinations by skilled personnel to accurately 

identify anomalous cells. The instruments' 

dependency on specific staining techniques and 

susceptibility to clinical conditions introduces 

variability in results. 

• Texture feature classification with s 

transform model [7, 8]: The texture feature 

classification approach utilizing a discrete 

orthonormal S transform model may face 

challenges in handling diverse leukocyte images. 

While features extracted from this model are 

used for training classifiers, the approach might 

lack adaptability to variations in image 

characteristics, limiting its ability to capture 

nuanced patterns effectively. 

• ML-based segmentation and classification 

[12]: Traditional machine learning-based 

segmentation and classification models, even 

with new color features, may struggle with 

accurately segmenting the cytoplasm of cells. 

The difficulty in addressing this segmentation 

challenge can impact the overall accuracy of 

classification, particularly when dealing with 

datasets such as Raabin white blood cell dataset 

(RWBCD), leukocyte images for segmentation 

and classification (LISC), and the blood cell 

count dataset (BCCD). 

• Elman neural network [13]: The Elman neural 

network proposed for classifying healthy and 
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unhealthy cells using various wavelet functions 

at different hidden layers may encounter 

challenges related to generalization. While 

attempting to increase generalization and search 

space compared to a simple neural network, the 

effectiveness of this approach may be influenced 

by the complexity of the network architecture. 

These drawbacks highlight the need for advanced 

techniques in leukocyte image analysis to overcome 

limitations associated with conventional methods. 

In contrast to conventional methods such as 

manual blood smear examination and automatic 

hematology instruments, the proposed approach 

seeks to revolutionize leukocyte image analysis by 

addressing inherent limitations in accuracy, 

efficiency, and adaptability. While manual 

examination is labor-intensive and subjective, the 

proposed method leverages advanced computer 

algorithms, data science, and computer vision to 

automate the process, significantly reducing reliance 

on human intervention. Unlike automatic hematology 

instruments that may lack sensitivity to specific 

leukocyte types, the proposed model introduces a 

novel perspective by integrating the stationary 

wavelet channel fusion filtered algorithm and the 

Invariant scattering network. This innovative 

combination not only enhances image quality 

through the application of mathematical operations 

but also employs feature learning practices to analyze 

leukocyte pictures systematically. By doing so, the 

proposed model aims to overcome the challenges 

faced by traditional approaches and offers a more 

robust, precise, and scalable solution for the early 

diagnosis and detection of leukemia and other blood-

related conditions. The emphasis on automatically 

extracted features and the integration of advanced 

algorithms positions this research at the forefront of 

leveraging artificial intelligence for transformative 

advancements in medical diagnostics. 

The model efficiently extracts distinguishable 

features from the enhanced image dataset and 

classifies them using the classifier support vector 

machine (SVM). The image dataset is preprocessed 

using the stationary wavelet channel fusion filtered 

(SWCFF) model that enhances the quality of images 

validated using the naturalness image quality 

evaluator (NIQE), a blind image quality measure [23]. 

3. Materials and methods 

The proposed leukocyte image classification model 

shown in Fig. 1 is characterised by different phases 

like pre-processing, feature extraction, and 

classification. Four benchmark datasets: ALLIDB,  

 

 
Figure. 1 Block diagram of leukocyte classification model 

 

 

BCCD, C-NMC, and LISC dataset [24, 25, 26, 27, 

28], are used with approximately 2000 images that 

include both binary class and multi-class. Firstly, 

datasets are subjected to image enhancement using 

the SWCFF model. Various features are extracted 

from intensified images using ISN and are classified 

using the SVM model. 

The images in the dataset are of low contrast and 

the region of interest (ROI) is not distinguishable 

from non-ROI. To address this issue, images are first 

preprocessed to enhance their quality. Image 

enhancement [29] has the power to improve image 

interpretability such that diagnostic features can be 

easily identified and extracted. The variant images 

from ALLIDB, BCCD, C-NMC, and LISC datasets 

are preprocessed:  to minimize background noise, 

reduce illumination errors, sharpen edges, and 

contrast differences between foreground and 

background. Sample images from different datasets 

are shown in Fig. 2. 

3.1 Preprocessing using SWCFF model 

The red green blue (RGB) images are first resized 

to the standard size of 228×228 pixels and converted 

to hue saturation value (HSV), as it is more robust 

towards lighting variations. The HSV image is 

fragmented into its constituent channels. The 

stationary wavelet transform (SWT) is applied to 

extract approximate, vertical, horizontal, and 

diagonal coefficients from each channel. The H, S, 

and V SWT coefficients are fused [30] and inverse 

SWT is applied to the resultant fused coefficients. 

The average fusion rule is applied to approximate 

coefficients and the maximum fusion rule to detailed 

coefficients.  
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The fusion rules are as follows: 

 

           𝐴 =
𝐴1+𝐴2+𝐴3

3
   (1) 

 

𝐻 = max⁡(𝐻4,𝐻5)⁡𝑤ℎ𝑒𝑟𝑒⁡𝐻4 = 𝑚𝑎𝑥(𝐻1,𝐻2) 
𝑎𝑛𝑑⁡𝐻5 = 𝑚𝑎𝑥(𝐻2,𝐻3)    (2) 

 

𝑉 = 𝑚𝑎 𝑥(𝑉4, 𝑉5)𝑤ℎ𝑒𝑟𝑒⁡𝑉4      

= 𝑚𝑎𝑥(𝑉1, 𝑉2) 𝑎𝑛𝑑⁡𝑉5 = 𝑚𝑎𝑥(𝑉2, 𝑉3)   (3) 

 

𝐷 = 𝑚𝑎 𝑥(𝐷4,𝐷5)𝑤ℎ𝑒𝑟𝑒⁡𝐷4 = 

𝑚𝑎𝑥(𝐷1, 𝐷2)𝑎𝑛𝑑⁡𝐷5 = 𝑚𝑎𝑥(𝐷2, 𝐷3)  (4) 

 

In the above equations: A1, A2, and A3 are 

approximate; H1, H2, and H3 are horizontal; V1, V2, 

and V3 are vertical, and D1, D2, and D3 are diagonal 

coefficients of HSV channel images H, S and V 

respectively. The coefficients: A, H, V and D are 

obtained after applying fusion rules. These 

coefficients are combined using inverse SWT to get 

the resultant fused image. This image consists of 

crucial features of all three channel images. The 

fusion rules are applied according to the Eqs. (1) to 

(4) and composed back to generate a reconstructed 

image. Unsharp filtering is a technique of subtracting 

smoothed or unsharp version of an image from the 

original one. The original image is convolved with 

the standard discrete Laplacian filters. Mathematical 

equations on unsharp masking are shown below. Eq. 

(5) gives the mask and Eq. (6) the filtered image. The 

Laplacian filters can be any one of the 3 filters as 

shown in Eq. (7). 

 

𝑔𝑚𝑎𝑠𝑘(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) − 𝑓̅(𝑥, 𝑦)                (5) 

 

Where 𝑓(𝑥, 𝑦)  is the original image, 𝑓̅(𝑥, 𝑦)  is 

the blur image. 

 

𝑔(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) + 𝑘⁡ ∗ ⁡𝑔𝑚𝑎𝑠𝑘(𝑥, 𝑦)        (6) 

 

Unsharp filtered mask is 𝑔(𝑥, 𝑦) scaled with 𝑘 =
1. 

 

[
0 −1 0
−1 𝐴 + 4 −1
0 −1 0

] [
−1 −1 −1
−1 𝐴 + 8 −1
−1 −1 −1

] 

[
1 1 1
1 −8 − 𝐴 1
1 1 1

]      (7) 

 

Three different masks can be used for filtering. 

The study used first mask. 

The image enhancement steps are as follows: 

 

• Resize input image to 228×228×3 pixels. 

• Convert an RGB image to HSV color 

space.  

• Separate the HSV image into 3 different 

channels H, S & V. 

• Apply a 2-level SWT on each channel. 

• Extract the approximate and detailed 

coefficients from each channel. 

• Implement the fusion rules on the 

extracted coefficients. 

• Reconstruct the original image using 

inverse SWT.  

• filter the reconstructed SWT gray scale 

image using the unsharp mask 

• calculate NIQE blind quality measure on 

the original and enhanced image for 

comparison. 

 

The fused gray-scale image is passed through an 

unsharp mask filter to further enhance the leukocyte 

cells. Compute no reference quality measure using 

NIQE metric on original RGB input image and 

SWCFF enhanced images [31]. Compare and 

validate the enhancement. All pre-processing 

procedures were executed in MATLAB using the 

Image Processing Toolbox. The Fig. 3 depicts 

resultant sample images from all the four datasets 

respectively enhanced using SWCFF algorithm. 

3.2 Feature extraction through ISN 

The SWCFF-enhanced images are subjected to 

feature-extraction using ISN. MATLAB’s Image 

Processing and Wavelet tool boxes were used to 

create the wavelet scattering framework [32]. The 

framework employs two banks of complex-valued 2-

D Morlet filters (i.e., two scattering stages). The 

scattering disintegration outcome is determined by 

the parameters set in the framework. Invariance Scale 

(s), quality factors (q), and number of rotations (r) are 

among the parameters. The ISN chooses the time-

invariant scale to be a discrete value using a specified 

number of wavelet filters. Selection of an appropriate 

unvarying scale would require a sound knowledge of 

dynamical shifts in the image under reference. The 

scattering framework is translation-invariant only up 

to the invariance scale. By default, MATLAB 

employs a quality factor of 8 in the first filter bank 

and a factor of 1 in the second. For image data, large 

quality factors are not needed. The same setting is 

retained in this work. A test was carried out to 

examine the extent to which alterations in certain 

parameter values affect the sensitivity of scattering 

properties. The test provided information on the 

 



Received:  November 4, 2023.     Revised: December 17, 2023.                                                                                   885 

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024           DOI: 10.22266/ijies2024.0229.73 

 

 
Figure. 2 Samples from dataset – Row 1: ALLIDB (All, 

healthy), C-NMC (All, healthy), Row2: BCCD 

(Eosinophil, Lymphocyte, Monocyte, and Neutrophil), 

Row3: LISC (Basophil, Eosinophil, Lymphocyte, 

Monocyte, and Neutrophil) 

 

 

 

 

 
Figure. 3 SWCFF Enhanced image of all datasets (From 

left original raw image to right filtered image) (Images 

obtained from methodology results) 

 

 

implication of differences in the means of a specific 

feature as a specified parameter is altered. When the 

scale invariance and quality factor parameters were 

modified, there was a substantial difference in the 

means for the majority of the attributes. However, not 

one of the features shows a statistically noteworthy 

variation in means when the amount of rotation 

parameter is changed. In the earlier iterations of the 

scattering framework, the parameters that were 

altered were limited to s and q. The q factor regulates 

the numeral of wavelets per interval (octave) in each 

of the filter banks. Although permitting wavelets 

within each octave may be advantageous because it 

allows for nuanced scale examination, it may also 

increase the processing complication of the 

framework if large number of wavelets are employed. 

As a result, a compromise must be reached 

somewhere in the middle. A two-layer image 

scattering network with an invariance scale of 40-by-

40 pixel was built. The first layer has two wavelets 

per octave and the second layer has single wavelet per 

octave and two wavelet rotations per layer are set up. 

In the framework, the default value assigned to the s 

parameter is 150. The s factor values were tested 

within the range of [25 150] with an incremental step 

of 25. This default value does not imply the ideal 

value for the parameter. 40 invariance-scales were 

opted as it gave good results for the chosen image 

dataset. The features obtained from the WSN are low-

variance, shift-invariant representations, and stable 

against spatial deformations [33]. 

Some mathematical notations and equations in 

WSN are as follows: Wavelet convolution is 

represented by the father and the mother wavelets 

which have known weights obtained without iteration. 

The father wavelet is represented by ϕ and the mother 

wavelet by ψ. The input image is first averaged using 

WLPF and then scaled with a mother wavelet 

resulting in layer 0 scatterings. The basic building 

block of WSN is continuous wavelet transform 

(CWT) which measures the similarity of image pixels 

with wavelets of varying frequency and scale, at each 

point in time. The modulus of CWT is convolved 

with low pass i.e., temporal averaging. Overall 

operation is shown in Eq. (8) as I order scattering 

coefficients – λ1:as the center frequency of I order 

wavelets [34]. The convolution is of the LPF with 

every individual row of CWT. The second order 

scattering proceeds by convolving the modulus of 

CWT with second order wavelets. The second CWT 

is computed directly on the modulus of the first CWT 

i.e., the second order wavelets take the entire first 

CWT as input and convolve with every individual 

row of second CWT. The second order coefficients 

are obtained by convolving modulus with WLPF as 

in Eq. (9) Higher orders proceed in the same manner, 

convolving wavelets with a modulus of a previous 

order, followed by modulus and low pass filtering. 

The nth order scattering coefficient is shown in Eq. 

(10). 

 

Scattering (I order) 
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𝑆1(𝑡1𝜆1) = |𝑥 ∗ ψ𝜆1| ∗ 𝜙           (8) 

 

Scattering (I order) 

 

𝑆2(𝑡1𝜆1𝜆2) = ||𝑥 ∗ ψ𝜆1| ∗ ψ𝜆2| ∗ 𝜙        (9) 

 

Scattering (nth order) 

 

𝑆𝑛(𝑡1𝜆1𝜆𝑛) = ||𝑥 ∗ 𝜓𝜆1| ∗ ………… |∗ 𝜓𝜆𝑛| ∗ 𝜙|      

(10) 

 

Wavelet scattering energy dilated wavelets: 

 

𝜓𝜆(𝑡) = 2
−𝑗

𝑄 ∗ 𝜓 (2
−𝑗

𝑄(𝑡)) , 𝑤𝑖𝑡ℎ⁡𝜆 = 2
−𝑗

𝑄      (11) 

 

Wavelet Transform 

 

𝑤𝑥(𝑡) = {𝑥 ∗ 𝜙(𝑡),⁡⁡⁡⁡𝑥 ∗ 𝜓𝜆(𝑡)}           (12) 

 

If    |𝜙̂(𝑤)|
2
+⁡∑ |𝜓̂𝜆(𝑤)|

2
= 1𝜆    then w is 

unitary: 

 

‖𝑤𝑥‖
2 = ‖𝑥 ∗ 𝜙‖2 + ∑ ‖𝑥 ∗ 𝜓𝜆‖

2
𝜆 = ‖𝑥‖2  (13) 

 

Eqs. (11), (12), and (13) show that energy in the 

spatial domain is equal to the energy in the frequency 

domain [35].  

To precis, the mother wavelets are decomposed 

to get father wavelets which are the actual features. 

The iterative utilization of the modulus of the wavelet 

transform facilitates the transfer of high-frequency 

energy from the original pixel to lower frequencies. 

At every step of transforming the energy in the lowest 

frequency band is obtained through convolution with 

ϕ. The remaining part is shifted towards the low 

frequency through a repeated application of the 

modulus of the wavelet transform and this process 

continues. The feature vectors are acutely down-

sampled to minimize the mathematical complication 

of the network. The vectors that can be visualized and 

interpreted, are collectively called scattering features. 

3.3 Classifier model design 

The SVM classifier an exceptionally accepted 

classification model, is trained using train dataset 

with a cubic polynomial kernel and a one-verses-all 

coding scheme. The extracted features from ISN 

model are divided into train and test set in the ratio 

80:20. The SVM hyperparameter selection process is 

speeded up with the employment of a technique for 

error-correcting output code with cross-validation of 

5 to fit, and also automatically adjusts the SVM 

hyperparameters [36]. SVM is computationally 

efficient on small and large balanced dataset, require 

less memory space, and offer greater classification 

performance [37]. SVM is suitable for both small and 

large datasets as long as all its data points fall within 

the support vector hyper plane. 

3.4 Assessment metrics 

The trained SVM model is validated using a 20% 

test set for each enhanced image dataset. The model 

is assessed with various indicators like accuracy, 

specificity, recall (sensitivity), precision, false 

positive rate (FPR), f1-score, [38, 39], Cohen’s kappa, 

etc. BCCD and LISC datasets are multi-class 

problems, hence per-class performances are 

calculated. The weighted mean between precision 

and recall is defined as the f1-score. Its value ranges 

between 0 and 1; from worst to best score.  

For a binary classification problem, the confusion 

matrix is a 2×2 matrix with positive and negative 

values of target variables; while columns represent 

the actual values of target classes, the rows being the 

predicted values. True positive (TP) and true negative 

(TN) represent predicted value that exactly matches 

the actual value of the target class. The errors false 

positive (FP) and false negative (FN) are predicted 

classes that do not match with the actual class. False 

positives are of major concern in the medical field 

since infected cells will be misclassified as healthy 

cells. This prediction is a threat to humans if left 

untreated, due to incorrect detection eventually may 

lead to loss of life. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
             (14) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                         (15) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                         (16) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                         (17) 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
               (18) 

 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
                       (19)    

 

Eqs. (14) to (19) depict the performance metrics. 

Since ALLIDB and NMC datasets are binary class is; 

but BCCD and LISC datasets are multi-class 

problems and hence these metrics cannot be directly 
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Table 1. Confusion matrix for two general class 

distributions 
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applied to compute the performance. Instead, per-

class performances are calculated [40, 41]. 

To investigate the concordance degree between 

model prediction and actual classification, in 1960 

Cohen proposed a metric called Kappa Index ‘K’. 

Cohen’s Kappa index measures the correlation 

between predicted and actual class labels of any 

dataset [42]. It can be used to find the relation 

between the performances of different models having 

different cases. 

The kappa index considers the actual class and 

predicted class as two independent variables. 

Marginal rows and marginal columns needed to 

compute K are extracted from the confusion matrix 

as shown in Table 1. and are given by Eq. (20). Eqs. 

(21) to (24) represent binary class Kappa index K 

computation formulae. 

 
𝑛𝑣ℎ

𝑛𝑇ℎ
=
𝑛𝑣𝑇

𝑁
⁡⁡𝐹𝑟𝑜𝑚⁡𝑡ℎ𝑖𝑠⁡𝑤𝑒⁡𝑐𝑎𝑛⁡𝑑𝑒𝑟𝑖𝑣𝑒: 

 

𝑛𝑣ℎ = ⁡
𝑛𝑇ℎ⁡.⁡⁡𝑛𝑣𝑇

𝑁
          (20) 

 

𝐵𝑖𝑛𝑎𝑟𝑦⁡𝑐𝑙𝑎𝑠𝑠⁡𝐾 =
𝑃𝑟𝑎−𝑃𝑟𝑒

1−𝑃𝑟𝑒
                       (21) 

 

• Here, 𝑃𝑟𝑎  is the observed agreement or 

Model accuracy 

• 𝑃𝑟𝑒  is the expected agreement or 

expected accuracy. 

• 1 − 𝑃𝑟𝑒  is maximum value – minimum 

value of the Numerator.  

 

Value is rescaled from −1 to +1. 

 

𝑃𝑟𝑒 = 𝑃𝑟𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑃𝑟𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒              (22) 

 

𝑃𝑟𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 =
𝑇𝑃+𝐹𝑁

𝑁
.
𝑇𝑃+𝐹𝑃

𝑁
                   (23) 

 

𝑃𝑟𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 =
𝑇𝑁+𝐹𝑃

𝑁
.
𝑇𝑁+𝐹𝑁

𝑁
            (24) 

 

Confidence interval (CI) [43] is a statistical 

measurement defined as, the probability that a 

parameter falls between certain ranges. It consists of 

like 95% or 99% of expected observations. For 

instance, if the observed accuracy of the machine 

learning model is 0.9615 then it's 95% CI is 0.9 to 1. 

This can be interpreted as; the model is 95% sure of 

its accuracy being in the range of 0.9 to 1 for a set of 

experiments. CI can be used to analyze well the 

statistical significance of certain predictions or 

estimations. If CI is zero, then it cannot be claimed 

that outcomes obtained from the results of 

experimentation are accreditable to a particular cause 

rather than it’s by chance. The results of every phase 

of experiment are recorded and repeated for 

validation and confirmation. Eq. (25) gives the radius 

of the interval for CI with n being the sample size 

used for the test and Z representing the number of 

standard deviations from the Gaussian distribution. Z 

is technically termed binomial proportion CI. The Z 

values for various percentages of CI are 1.64 for 90%, 

1.96 for 95%, 2.33 for 98% and 2.58 for 99%. 

Generally, 95% and 99% CI are used. The metric 

with a +/- radius of interval is calculated and 

displayed as CI. 

 

𝑅𝑎𝑑𝑖𝑢𝑠⁡𝑜𝑓⁡𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 𝑍 × √
𝑚𝑒𝑡𝑟𝑖𝑐∗(1−𝑚𝑒𝑡𝑟𝑖𝑐)

𝑛
 

(25) 

 

Interclass correlation coefficient (ICC) [44] is an 

inter-rater reliability measure used to find the 

reliability of ratings to the research data collected as 

groups from different people. Its value ranges from 0 

to 1. A high value of ICC (close to 1) indicates high 

similarity among data from the same group and on the 

other side, low value indicates dissimilarity. One can 

measure ICC using Cohen’s kappa as mentioned by 

Stephanie Glen [45]. Most of the researchers have 

evaluated their classifier models using equations 14 

to 19. This study attempts to compute evaluation 

metrics like the kappa index and CI to validate the 

methodology. 

4. Results and analysis 

This work focuses on exploring how the ISN 

features obtained from SWCFF-enhanced images 

influence the classification performance. The 

experimentations involving binary and multiclass 

image datasets were performed on a PC with core i3-

2350M CPU @2.3GHz, 8GB RAM, and windows 10 

operating system. The simulation of the proposed 

methodology was performed using MATLAB 2019a. 

The first experiment was devoted to image  
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Table 2. Comparison of original and SWCFF enhanced images using NIQE metric 

ALLIDB Image files Original Input Image 

(RGB) 

Fused 

Image 

Fused Filtered 

Image 

ALL infected 

lymphoblasts 

Im003_1__output 4.06 8.21 10.76 

Im001_1__output 4.16 7.38 10.88 

Im002_1__output 3.91 6.94 11.30 

Im122_1__output 4.13 6.78 15.11 

Healthy lymphocytes Im260_0__output 4.40 6.73 14.13 

Im132_0__output 4.06 10.69 12.22 

Im186_0__output 3.60 8.37 11.29 

Im227_0__output 3.92 8.66 14.21 

 

 
Figure. 4 SWCFF model performance for ALLIDB dataset 

 

enhancement using the proposed SWCFF model. The 

images from all the datasets were processed, recorded, 

analyzed, and validated using NIQE blind image 

quality measure. The feature coefficients were 

extracted from: original RGB images; HSV 

converted images; wavelet decomposed fusion 

images; and finally, from fusion filtered images using 

ISN. The final experimentation was on the 

classification of enhanced images using SVM model. 

The pictures were divided into 80% training set and 

20% test set. The confusion matrix was generated for 

fused filtered images of all the datasets. Table 2 

provides NIQE scores computed at every step of the 

SWCFF algorithm for a few of sample images from 

ALLIDB. Images are named ‘Imxxx_y_output’, 

where x represents image number and y represents an 

unhealthy (1) lymphoblast cell or healthy (0) 

leukocyte cell. NIQE values clearly indicate that 

image quality has improved at each stage of the 

SWCFF model. The image fusion method proposed 

in this study has contributed in enhancing the original 

images as evident from the NIQE score depicted in 

Table 2 and in Fig. 4. 

Table 3 shows a comparison of test accuracy, 

cross-validation accuracy, and loss for the datasets 

resulting from 5-fold cross-validation. Table 4 gives 

the conduct of the SVM classifier with metrics such 

as accuracy, precision, f1-score and recall 

(specificity) computed from the confusion matrix 

generated for the binary class: ALLIDB and NMC 

dataset. Since BCCD and LISC are 4 and 5-classed 

datasets respectively, their individual class metrics 

are calculated as shown in Tables 5 and 6. Tables 4, 

5, and 6 also shows performance metrics computed 

for 95% CI. Figure 5 depicts the bar chart of actual 

and predicted class distribution. Fig. 6 displays 

performance metrics for all 4 datasets. 

The results obtained from the experimentation 

using the SWCFF enhancement model and ISN 

feature extraction model and their influence on the 

performance of both binary and multiclass 

classification are presented in this section. It is 

evident from Table 3 that the SWCFF model results 

in pretty good accuracy for the ALLIDB dataset with 

96.15% (95% CI of 0.9 to 1) and a minimum loss of 

7.21%. It also depicts how accuracy improves step by 

step when images get transformed from original RGB 

to fusion-filtered images. The study investigates the 

inherent quality of wavelet features being consistent 

with local deformations, the scattering 

decomposition can capture vital discriminative 

features from images that are hard to detect amidst  
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Table 3. Comparison of test accuracy, cross validation accuracy and loss for all 4 datasets (in %) 

Methodology Dataset  Test Accuracy Cross validation Accuracy Loss 

RGB ALLIDB 76.92 75.96 24.03 

BCCD 33.33 30.07 69.92 

LISC 71.42 65.28 34.71 

C_NMC 69.23 65.38 34.61 

HSV ALLIDB 79.12 78.32 24.80 

BCCD 27.08 31.77 68.23 

LISC 65.30 67.35 32.64 

C_NMC  59.61 58.17 41.82 

Fusion ALLIDB 84.61 91.34 8.65 

BCCD 32.29 30.72 69.27 

LISC 65.30 65.28 34.71 

C_NMC 63.46 60.09 39.90 

Fused filtered ALLIDB 96.15 90.86 7.21 

BCCD 37.50 30.72 69.27 

LISC 75.51 67.87 32.12 

C_NMC 65.38 58.41 41.58 

 

 
Figure. 5 Actual and predicted class distribution 

 

Table 4. Binary class dataset performance measures 

(in %) with 95% CI (min value to max value) 

DATASET ALLIDB C_NMC 

Accuracy 96.15 (0.9 to1.00) 65.38 (0.53 to.78) 

Precision 92.86 (0.85 to 

0.99) 

66.67 (0.54 to 

0.79) 

Recall 100 61.54 (0.48 to 

0.75) 

Specificity 92.31 (0.85 to 1) 69.23 (0.57 to 

0.82) 

F1-Score 96.30 (0.91 to 1) 64 (0.51 to0.77) 

FPR 7.69 (0.5 to 0.07) 30.77 (0.43 to 

0.13) 

Kappa 92.30 (0.85 to 1) 30.76 (0.18 to 

0.43) 

 

illumination and staining artifacts but reflect the 

diagnostic condition of disease. Therefore, ISN is 

used to generate robust representations of leukocyte 

images that minimize variations within one leukocyte 

class while still retaining much-needed 

distinguishability between its types. Though ISN 

with filters not learned but are fixed well in advance 

and features are extracted not only from the last 

layers but are a combination of all the layers. It is 

evident that scattering coefficient energy reduces 

rapidly as layers increase, 99% of energy is present 

in the first two layers. Hence this study used only two 

layered scattering networks to extract the features. 

This reduces greatly the computational complexity 

and execution time (mean time for all datasets is 45 

seconds). The classification accuracy is quite equally 

acceptable w.r.to ALLIDB and LISC Datasets with 

an accuracy of 96.15% (95% CI 0.9 to 1) and 89.66% 

(95% CI 0.72 to 1) (average) respectively. Thus, ISN 

is operational with minimal resources, less execution 

time, and with feature interpretability, it can be 

replaced with CNN under a moderately sized dataset 

environment. As can be seen from Table 4, the model 

could not perform well on C_NMC dataset since the 

cells in these images lacked texture details which 

resulted in the loss of valuable information that 

deteriorated when further processed. This can be 

addressed by more complex texture enhancement 

models.  

Table 4 shows the performance of the multiclass 

BCCD dataset whose average class accuracy is 

68.75% (95% CI 0.56to 0.82) and a minimum FPR of 

0.19. These dataset images are characterized by 

similar sample appearance among classes and were 

easily misclassified. The monocytes and 

lymphocytes have a similar cell nucleus and poor 

background discrimination. 

Table 6 depicts LISC dataset performance with 

the highest accuracy of 97.96%, precision and 

specificity maximum of 1, and ideal FPR of 0 for  
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Table 5. BCCD dataset performance measures (in %) with 95% CI (min value - max value) 

BCCD Eosinophil Lymphocyte Monocyte Neutrophil Average 

Accuracy 71.35 

(0.59 - 0.84) 

68.75 

(0.56 - 0.82) 

71.35 

(0.59 - 0.84) 

63.54 

(0.5 - 0.77) 

69.01 

(0.56 - 0.82) 

Precision 43.41 

(0.29 - 0.57) 

35.71 

(0.22 - 0 .49) 

42.55 

(0.29 - 0.57) 

28.23 

(0.15 - 0.41) 

37.13 

(0.24 - 0.51) 

Recall 47.92    

(0.34 - 0.62) 

31.25 

(0.18 - 0.44) 

41.67 

(0.28 - 0.56) 

29.17 

(0.16 -0.42) 

38.12 

(0.24 to0.51) 

Specificity 79.17 

(0.68 - 0.91) 

81.25 

(0.70 - 0.92) 

81.25 

(0.70 - 0.92) 

75.12 

(0.63 - 0.87) 

79.02 

(0.68 to 0.9) 

F1-Score 45.54 

(0.31 - 0.60) 

33.33 

(0.20 - 0.47) 

42.11 

(0.28 - 0.56) 

28.57 

(0.16 - 0.41) 

37.23 

(0.24 to 0.51) 

FPR 20.83 

(0.09 - 0.32) 

18.75 

(0.08 - 0.30) 

18.75 

(0.08 - 0.30) 

25.0 

(0.13 - 0.37) 

21.0 

(0.09 to 0.32) 

Kappa 16.67  

(0.16 - 0.17) 

 

Table 6. LISC dataset performance measures (in %) with 95% CI (min value - max value) 

LISC Basophil Eosinophil Lymphocyte Monocyte Neutrophil Average 

Accuracy 87.50 

(0.67 - 1) 

81.25 

(0.54 - 1) 

97.92 

(0.89 - 1) 

83.67 

(0.60 - 1) 

97.96 

(0.89 - 1) 

89.66 

(0.72 - 1) 

Precision 80.00 

(0.56 - 1) 

40.00 

(0.06 - 0.74) 

90.91 

(0.73 - 1) 

57.14 

(0.26 - 0.88) 

100 79.00 

(0.63 - 0.94) 

Recall 72.73 

(0.46 - 0.99) 

25.00 

(-0.05 - 0.55) 

100 80.00 

(0.56 - 1) 

90.00 

(0.71 - 1) 

85.00 

(0.63 - 1) 

Specificity 93.10 

(0.78 -1.08) 

92.50 

(0.74 - 1.11) 

97.37 

(0.87 -1.07) 

84.62 

(0.62 -1.07) 

100 92.00 

(0.81 -1.03) 

F1-Score 76.19 

(0.51 - 1.01) 

30.77 

(-0.01 - 0.63) 

95.24 

(0.82 - 1.08) 

66.67 

(0.37- 0.96) 

94.74 

(0.81 - 1.09) 

81.00 

(0.59 - 1.02) 

FPR 6.90 

(-0.08 -0.22) 

7.5 

(-0.11 -0.26) 

2.63 

(-0.07 -0.13) 

15.38 

(-0.07 -0.38) 

0.00 6.48 

(-0.03 -0.19) 

Kappa 69.23 

(0.68 to 0.7) 

 

 
Figure. 6 Performance graph of binary and multi class 

dataset 

 

neutrophil images. High specificity is evidence of 

reduced risk and no need to proceed with unnecessary 

painful biopsies in the later stages of the treatment. 

Similarly, high sensitivity or recall is a clear 

indication of accurate diagnosis i.e., presence or 

absence of disease. A kappa index of 92.30% for 

ALLIDB indicates model prediction is near perfect 

agreement with the actual class. Similarly, the kappa 

index of 69.23% for the LISC dataset presents model 

prediction is in a substantial agreement with the true 

class.  

Table 7 (a) and b compares the proposed cell 

image classification system with state-of-the-art 

methods. In [17], Nizar Ahmed employs CNN on 

ALLIDB and ASH-Image bank, achieving accuracies 

of 88.25% and 81.74%, with high execution time on 

a single CPU and no image preprocessing. Sajad 

Tavakoli [12] addresses cytoplasm segmentation 

issues using LISC, achieving an accuracy of 92.21% 

and an F1 score of 94%, demonstrating robustness 

against staining artifacts. The accuracy of 96.15%, 

F1-Score of 96.30%, FPR of 7.69% for ALLIDB 

dataset and accuracy of 97.96%, F1-score of 94.74%, 

precision and specificity of 100% and least FPR of 0 

for LISC dataset outperforms many CNN-based 

models as in Sajad Tavakoli (2021) and Hua Chen 

(2022) [46-54]. Hence, the SWCFF enhancement 

model and ISN have shown intense influence on 

classification performance.  
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Table 7 (a) Comparison of proposed system with existing state-of-the art methods (binary class dataset) 

Study Dataset Source Techniques used Performance 

Metric 

Remarks 

Nizar Ahmed 

(2019) [17] 

ALLIDB 

 

CNN Accuracy- 

88.25% 

81.74% 

High execution time since run on 

single CPU. No image preprocessing 

is done. 

Proposed 

Model 

ALLIDB SWCFF+ISN+SVM Accuracy-96.15% 

Recall-100% 

F1-score-96.3% 

FPR-7.69% 

ISN analogous to CNN used without 

complex GPU H/W and tested on 

ALLIDB Dataset. Results match 

CNN models. 

 
Table 7 (b) Comparison of proposed system with existing state-of-the art methods (multiclass dataset) 

Study Dataset Source  Techniques used Performance 

Metric 

Remarks 

Sajad 

Tavakoli 

(2021) [12] 

LISC  

 

Segmentation 

(nucleus 

&cytoplasm) 

Feature Extraction 

(shape and color) 

SVM 

Accuracy-92.21%,  

F1score-94% 

 

Addressed issue in segmenting 

cytoplasm of cell. Robust and 

resilient against varying staining 

artefacts and imaging instruments 

Hua Chen 

(2022) [18] 

LISC, BCCD  Dense-Net & 

Resnet 

Overall Accuracy 

97.96%, 88.44% 

 

Improved generalizability of the 

model by mix-up of images of 

different class that share common 

background pixels. Complex H/W 

needed 

Proposed 

Model 

LISC  SWCFF+ISN+ 

SVM 

Accuracy-97.96% 

Precision-100%, 

Specificity-100% 

F1-Score-94.74%, 

FPR-0 

ISN analogous to CNN used without 

complex GPU H/W and tested on 

LISC Dataset. Results match CNN 

models. 

 

 

Hua Chen [18] uses dense-net and ResNet on 

LISC and BCCD, achieving overall accuracies of 

97.96% and 88.44% respectively, with enhanced 

generalizability but requiring complex hardware. The 

proposed model, tested on ALLIDB and LISC 

datasets, achieves accuracies of 96.15% and 97.96%, 

respectively, excelling in specific metrics without the 

need for complex GPU hardware, using an ISN 

analogous to CNN [12, 17, 18]. 

The proposed new enhancement algorithm 

SWCFF gives comparable good results on ALLIDB, 

BCCD, C_NMC and LISC dataset. To best of our 

knowledge, we could hardly find any work in the 

literature that has implemented ISN on leukocyte 

blood cell images. This shows that this study is the 

first to use wavelet scattering features on leukocyte 

classification problem. The proposed methodology is 

highly reliable and robust for a balanced and 

unbalanced dataset of medical images without the 

need for complex hardware. 

5. Conclusion 

This study demonstrates a simulation of 

leukocyte classification problem using image-

processing and machine-learning techniques on four 

benchmark datasets of peripheral blood smear images. 

The SWCFF channel fusion approach in 

preprocessing retains the key details of the image and 

aids the feature extraction process. The ISN; a 

minimal configuration network with low variance 

and insensitive to translations used to learn features 

is new and simple to implement. The binary 

classification accuracy has achieved a maximum of 

96.15% and multi-class average accuracy of 90% on 

the benchmark dataset ALLIDB and LISC. The 

scattering network parameter settings and the type of 

2-D channel image have a significant impact on 

detection accuracy. This study has evaluated the 

proposed model using an extensive metric set 

including statistics of point estimates; inter-subject 

correlations and confidence intervals. A contrast of 

the categorizing results got from this study with those 

acquired from a CNN highlights the potential of the 

suggested technology for leukocyte identification. 

The proposed methodology, when employed as a 

CAD tool, is very economical and can be deployed in 

remote areas or villages for early prediction of 

disease and timely monitoring of treatment. In the 

future, we will make an effort to investigate and 

enhance the system performance for BCCD and 
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C_NMC datasets and work on the conception of a 

highly durable system that can perform well on real-

time cell images. Also, investigate detection-based 

systems and semantic segmentation-based 

classification models without using complex 

hardware. 
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