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Abstract:  Lung diseases have been a significant concern throughout history, necessitating early disease prediction 
using high-level knowledge. Deep Learning models have proven effective in diagnosing lung disorders using clinical 
imaging modalities like Computerized Tomography (CT) and Chest X-Ray (CXR) images. The Ensemble Deep 
Lung Disease Predictor (EDEPLDP) framework has been proposed for the rapid detection of various diseases using 
CT and CXR images. However, the U-Net model used for segmentation tasks lacks sufficient low-level localization 
abilities. To address this, a Semantic Location enhanced Swin Transformer-based U-Net (SLST-U-Net)+EDEPLDP 
model is proposed in this article. This model leverages Location Attention (LA) and De Mejora Progresiva (DMP) to 
enhance feature discrimination at the level of spatial information and semantic position. The Contextual Guidance 
Attention (CGA) method combines spatial and semantic information. The DMP enhances feature discrimination by 
increasing edge data inference and providing a richer depiction of the target position. The CGA reduces the semantic 
gap and effectively fuses spatial texture information and semantic information. The LA mechanism improves 
computational capacity for semantic features and precision of semantic position data, enabling retrieval of long-
range contextual data in channel and geographic contexts. Additionally, Swin Transformer (ST) is added in the 
encoder and decoder section of U-net to increase the finer details of spatial and semantic information. Finally, the 
features extraction and classification part of EDEPLDP is employed to detect and classify the lung diseases. 
Experimental results revealed that the proposed SLST-U-Net+EDEPLDP model outperforms the CNN, E2E-DNN 
LungNet22, EfficientNet-SE, LDDNet and EDepLDP models with an accuracy of 94.94% and 95.42% on CXR and 
CT images, respectively. 

Keywords: Lung diseases, Location attention, De mejora progresiva contextual guidance attention, Swin 
transformer. 

 

 

1. Introduction 
Lung diseases or pulmonary disorder negatively 

influences the lung conditions and their connective 
tissues in humans [1]. The examples include 
Coronavirus Disease 2019 (COVID-19), pneumonia, 
Chronic Obstructive Pulmonary Disease (COPD), 
etc. Millions of people die annually due to lung 
illness, making it a major cause of mortality and 
disability. Early identification is crucial for 
improved survival and diagnosis [2]. 

Traditionally, medical practitioners have used 
diagnostic imaging techniques such as CT, CXR, 
Positron Emission Tomography (PET), and 
Magnetic Resonance Imaging (MRI) to diagnose 
lung illnesses for the early lung disease prediction 
[3]. But, these imaging techniques require skill and 
multiple models to accurately interpret the images. 
DL is an emerging field that is applied to diagnose a 
variety of lung diseases and provides valuable 
assistance for healthcare providers in making 
accurate medical decisions [4]. This method enables 
immediate disease detection for analyzing complex 



Received:  December 6, 2023.     Revised: January 18, 2024.                                                                                           334 

International Journal of Intelligent Engineering and Systems, Vol.17, No.2, 2024           DOI: 10.22266/ijies2024.0430.28 

 

medical images. DL approaches are often sorted as 
Convolutional Neural Network (CNN), Recurrent 
Neural Network (RNN), Long Short Memory Term 
(LSTM), and others [5]. CNN is a common DL 
approach that trains clinical image structures and 
features to identify all disease types using improved 
clinical images [6].  

For example, an automatic DL-based lung 
ailment detection model [7] has been developed to 
categorize healthy and infected CXR scans. The 
model utilizes manual lung masks to segment the 
lung area and a new CNN architecture with extra 
layers and tweaked hyper-parameters. However, this 
model was plagued by epistemic uncertainty, which 
significantly impacts the efficacy of DL models 
used to identify lung diseases. To solve this, the 
EDepLDP model has been proposed [8]. The model 
uses U-Net architecture to segment CXR and CT 
images, then uses InceptionResNetV2 and Xception 
to identify informative and discriminative features. 
These features are then used in conGRU-LSTM to 
categorize lung disorders. However, the U-Net 
model applied for the segmentation applications 
results in poor low-level localization abilities.  

In this paper, SLST-U-Net+EDepLDP model is 
developed to overcome the inadequacies of U-net's 
localisation capabilities in EDepLDP when applied 
to CT and CXR images for lung disease diagnosis. 
SLST-U-Net increases feature discrimination at the 
granularity of geographic detail and semantic 
location by using DMP and LA. The CGA technique 
integrates spatial and semantic data, improving 
feature discrimination and enriching data with a 
comprehensive target representation. It bridges the 
gap between these two types of data, allowing 
seamless integration of spatial texture and semantic 
data. The LA mechanism enhances representational 
capacity for semantic features and location 
information, efficiently collecting long-range 
contextual information in channel and geographic 
settings. Both encoder and decoder in U-net use ST 
for extracting coarse and fine-grained information. 
Finally, the EDepLDP feature extraction and 
classification segment is employed to accurately 
classify the lung diseases types.  

The following portions are prepared as follows: 
Section II examines related studies. Section III 
explains the SLST-U-Net+EDepLDP model for lung 
disease classification. Section IV illustrates the 
performance effectiveness of the proposed model. 
Section V summarizes the whole work and suggests 
future enhancement. 

 
 

2. Literature survey 
A hybrid technique using DL networks was 

developed [9] for categorizing Interstitial Lung 
Disease (ILD). CT images were segmented using a 
conditional GAN, followed by a multiscale feature 
retrieval module. Pre-trained ResNet50 classifier 
extracted features and Support Vector Machine 
(SVM) was employed for ILD classification. 
However, this results with lowest accuracy results. 

A multi-stage approach called SPFKMC method 
was developed [10] for segmenting and categorizing 
ILD patterns by utilizing superpixel analysis and k-
means cluster fusion. But, this model faces 
substantial low-order localization concerns. 

The EfficientNet v2-M deep learning model [11] 
was built for classifying lung disorders on CXR 
scans. This model enhances the detection task 
accuracy by utilizing pre-trained weights from 
ImageNet and augmented data to enhance sample 
diversity. But, the hyper-parameters were not fine-
tuned well resulting in lower precision rate. 

An End-to-End Deep Neural Network (E2E-
DNN) [12] was developed to classify lung disorders 
from CT image patches. The data was cleaned and a 
new structure was developed to better categorize 
lung tissue images, trained using categorical cross-
entropy and optimized using Adam. However, this 
model resulted with lower F1-Score. 

The LungNet22 model was developed [13] for 
lung disease types, using raw CXR data from 
multiple sources. It uses CLAHE techniques and 
Green Fire Blue filtering, upsampling classes with 
less data, and CNN models for categorization. But, 
the model doesn’t considered the negative cases 
equally resulting to lower recall values. 

A multichannel EfficientNet-based stacking 
ensemble method was developed [14] using CXR 
images for lung disease identification. The dataset 
combines retrieved traits into a model partitioned 
into dynamic layers. This is fed into a stacked 
ensemble learning classifier for lung disease 
diagnosis. But, this model provides lower accuracy 
on larger datasets. 

A CNN framework for lung segmentation was 
constructed [15] using CT and CXR images, 
capturing relevant features with concatenate blocks 
and a transpose layer for enhanced spatial resolution. 
However, this model necessitates advanced 
segmentation model to improvise the accuracy result.  

An optimized DenseNet201 layer called 
LDDNet was constructed [16] for detecting 
infectious lung diseases was developed using CT 
and CXR images. It incorporates dropout, batch 
normalization, global average pooling layer, and  
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Figure. 1 Overall Pipeline of SLST-U-Net+EDepLDP 

 
Table 1. Lists of notations 

Notations Description 
c Number of Channels 
ℎ ∗ 𝑤𝑤 spatial resolution of the image 
𝑃𝑃𝑢𝑢𝑢𝑢 Position Relevance Attention Map 
𝐻𝐻ℎ𝑖𝑖𝑖𝑖ℎ Large receptive field feature 
𝐻𝐻𝑙𝑙𝑙𝑙𝑙𝑙 Small receptive field feature 
𝑔𝑔 final output of GC 
𝑤𝑤𝑎𝑎 and 
𝑤𝑤𝑏𝑏  

Embedding matrices of different 
convolution projections 

 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 Attention Map 
𝜎𝜎 Sigmoid Function maps all the values 

between 0 and 1 
𝐻𝐻  Encoded Feature  
𝜙𝜙 ReLU activation 
𝜂𝜂𝑢𝑢 Weighted sum of a linearly transformed 

input elements 
𝑤𝑤𝑦𝑦, 𝑤𝑤𝑥𝑥 
and 𝑤𝑤𝑗𝑗  

Parameter matrices of each layer and each 
attention head 

𝛶𝛶𝑢𝑢𝑢𝑢 Each weight coefficient calculated by 
using softmax function 

𝜘𝜘𝑢𝑢,𝑣𝑣 Correlation among two input elements 
intended by scaled dot product 

𝑖𝑖𝑢𝑢 and 𝑖𝑖𝑣𝑣 Definite position embedding between 
input variable  

𝑧𝑧𝑢𝑢,𝑣𝑣 Matrix form for 𝑖𝑖𝑢𝑢 and 𝑖𝑖𝑣𝑣 
𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 Context-dependent attention map 
𝑦𝑦𝑢𝑢𝑢𝑢
𝑗𝑗  Trainable position parameter matrix. 

𝐻𝐻𝑐𝑐  Feature of the 𝑐𝑐𝑡𝑡ℎ route of feature H 
𝐶𝐶𝑤𝑤 Tasks correlation of all channel feature 
𝐻𝐻� Key Channel Feature 
𝑛𝑛 Total number of pixels in each image  
𝑇𝑇 Decoded Feature 
𝑠𝑠𝑢𝑢 Ground-truth value of the 𝑢𝑢𝑡𝑡ℎ pixel 
𝑧𝑧𝑢𝑢 Confidence score of the 𝑢𝑢𝑡𝑡ℎ pixel  
𝑆𝑆 Patch Size  
𝐻𝐻�𝑜𝑜𝑜𝑜𝑜𝑜𝑢𝑢   Final output of small scale branch in TCF 
ℎ𝑎𝑎 Primary feature Branch in TCF 
𝑔𝑔𝑢𝑢  Secondary feature Branch in TCF 

dense layer. However, this accuracy would be 
degraded if the model trains on larger datasets.  

3. Proprsed Methodology 
This section briefly outlines the complete 

framework of SLST-U-Net+ EDepLDP, as shown in 
Fig. 1.  Table 1 lists the notations used in this study. 

3.1 Semantic Localization for Semantic Feature 
Enhancement 

Swim transformers are used in SLST-U-Net for 
medical image segmentation improving the 
performance of an ST-based model. The SLST-U-
Net is built using U-Net for segmenting clinical 
images, following previous work [8].    

The SLST-U-Net system consists of three steps: 
encoding, decoding, and improving semantic 
features. ResNet50 is a model used for 
characterizing features in medical images with four 
encoding blocks as depicted in 2(a) that down-
sample feature maps by a factor of two. 

 

 
(a)                               (b)                        (c) 

Figure. 2 Design of the encoding and decoding: (a) 
Residual Block (RB) in encoding, (b) Position of DMP, 

and (c) Design of Decoding. 
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Figure. 3 Structure of DMP 

 
Fig. 2(b) and 2(c) depicts the DMP location and 

encoding structure respectively. The decoding 
process is compatible with traditional U-Net, 
involving two convolutions and one up-sampling for 
segmentation. The semantic feature enhancement, 
referencing LA, improves representation capacity 
whereas DMP and CGA are included in the third 
and second encoded to reduce processing costs. 

3.1.1 Framework of DMP unit 

The Intensive Self-Attention Convolution 
(ISAC) and the Gated Convolution (GC) are the two 
components of the gradual improvement mechanism. 
The structure of DMP model is depicted in Fig. 3.  

The convolution function uses the 3 ∗ 3 
convolution module and two dilated SAC blocks to 
collect features from various receptive fields. The 
GC receives features from both operations, and the 
larger receptive field feature is used for differential 
extraction. The discriminative features are captured 
again before the original 3*3 convolution output and 
the results of the two GCs are merged. 
 
[a] Intensified Self-Attention Convolution 
(ISAC):  The ISAC uses Multi-Head Self-Attention 
(MHSA) transformer method which focuses on local 
and global data using dilated convolution 
embedding. This method optimizes feature 
representations by selectively aggregating global 
context and incorporating broader contextual 
positioning information into local features. At first, 
three distinct dilated convolution functions are 
conducted to the encoder feature a ∈ ¡𝑐𝑐∗ℎ∗𝑤𝑤 to yield  

Figure. 4 Structure of ISCA 
 
the feature maps 𝑟𝑟 ∈  ¡𝑐𝑐′∗ℎ∗𝑤𝑤 , 𝑠𝑠 ∈ ¡𝑐𝑐′∗ℎ∗𝑤𝑤  and  𝑡𝑡 ∈
 ¡𝑐𝑐′∗ℎ∗𝑤𝑤  . In order to decrease the computation and 
the amount of model variables where c is specified 
as 𝑐𝑐′ =  𝑐𝑐 4� . Following that, 𝑟𝑟 and 𝑠𝑠 are re-formed 
as the feature maps 𝐸𝐸 ∈ ¡(ℎ∗𝑤𝑤)∗𝑐𝑐′ , 𝐹𝐹 ∈ ¡(ℎ∗𝑤𝑤)∗𝑐𝑐′  and 
𝑡𝑡 into 𝐾𝐾 ∈ ¡¡(ℎ∗𝑤𝑤)∗𝑐𝑐 , respectively. The fig. 4 depicts 
the ISAC model. 

The positional relevant attention is generated 
through matrix multiplication and softmax 
normalization using feature maps E and F, as 
described in Eq. (1). 

𝑃𝑃𝑢𝑢𝑢𝑢 =  exp ( 𝐸𝐸𝑢𝑢 . 𝐹𝐹𝑣𝑣)
∑ exp ( 𝐸𝐸𝑥𝑥 . 𝐹𝐹𝑣𝑣)𝑛𝑛
𝑥𝑥=1

   ( 1 ) 

In Eq. (1), 𝑃𝑃𝑢𝑢𝑢𝑢 represents the influence of the 
𝑢𝑢𝑡𝑡ℎ position on the 𝑣𝑣𝑡𝑡ℎ position in Eq. (1), and 𝑛𝑛 =
ℎ ∗ 𝑤𝑤  is the pixel numbers. Following that, 𝑄𝑄  is 
multiplied by 𝑃𝑃  and the resultant feature at each 
point may be expressed in Eq. (2), 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑃𝑃,𝑄𝑄) = 𝑃𝑃.𝑄𝑄    ( 2 ) 

Ultimately, the optimised feature maps are re-
modified in order to keep the ISAC output, i.e., 
𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ ¡𝑐𝑐∗ℎ∗𝑤𝑤 . 
 
Gated Convolution (GC): The GC module has two 
inputs, 𝐻𝐻ℎ𝑖𝑖𝑖𝑖ℎ ∈ ¡𝑐𝑐∗ℎ∗𝑤𝑤  and 𝐻𝐻𝑙𝑙𝑙𝑙𝑙𝑙 ∈ ¡𝑐𝑐∗ℎ∗𝑤𝑤  which 
represent major andminor adaptive field features 
respectively, as depicted in Fig. 3.  The feature maps 
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∈ ¡𝑐𝑐∗ℎ∗𝑤𝑤 and 𝐻𝐻 ∈ ¡𝑐𝑐∗ℎ∗𝑤𝑤 are then generated by 
applying two distinct convolutional methods to the 
features as 𝐻𝐻ℎ𝑖𝑖𝑖𝑖ℎ  and 𝐻𝐻𝑙𝑙𝑙𝑙𝑙𝑙 . After that, a 
multiplication function is accomplished instantly. To 
calculate the absolute result 𝑔𝑔  of 𝐺𝐺𝐺𝐺 , i.e., 𝐻𝐻𝐺𝐺𝐺𝐺 ∈
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 ¡𝑐𝑐∗ℎ∗𝑤𝑤 .  The computing procedure is expressed as 
following 
 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 =  𝑤𝑤𝑎𝑎  .𝐻𝐻ℎ𝑖𝑖𝑖𝑖ℎ    (3) 
 
𝐻𝐻 = 𝑤𝑤𝑏𝑏 .𝐻𝐻𝑙𝑙𝑙𝑙𝑙𝑙    (4) 
 
𝑔𝑔 =  𝜙𝜙(𝐻𝐻) ∗ 𝜎𝜎(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺)   (5) 

 
In the preceding equations (3), (4), and (5), 𝑤𝑤𝑎𝑎 

and 𝑤𝑤𝑏𝑏  are the embedding vectors of various 
convolution mappings. The attention map and 
sigmoid operations is defined as 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 and 𝜎𝜎 which 
maps each value to the range from 0 to 1. 𝐻𝐻 defines 
the feature integration, and represents ReLU 
stimulation. 
3.1.2 Local Attention (LA) 

The LA model employs Routed MHSA 
(RMHSA) and Dimensional MHSA (DMHSA) 
mechanisms to accurately represent lesion regions, 
with RMHSA utilizing SA for improved route and 
dimensional data, and DMHSA using relative 
position embedding for spatial feature connections. 
The task of definite position embedding is defined 
by 

 𝜘𝜘𝑢𝑢,𝑣𝑣 =  (𝑖𝑖𝑢𝑢𝑤𝑤𝑦𝑦 .  (𝑖𝑖𝑣𝑣𝑤𝑤𝑥𝑥)𝑄𝑄

�𝐷𝐷𝜂𝜂
    (6) 

 
𝑧𝑧𝑢𝑢,𝑣𝑣 = �𝑖𝑖𝑢𝑢𝑤𝑤𝑗𝑗�. (𝑦𝑦𝑢𝑢𝑢𝑢

𝑗𝑗 )𝑄𝑄   (7) 
 
𝛶𝛶𝑢𝑢𝑢𝑢 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝜘𝜘𝑢𝑢,𝑣𝑣+ 𝜚𝜚𝑢𝑢,𝑣𝑣)

�𝐷𝐷𝜂𝜂
    (8) 

 
𝜂𝜂𝑢𝑢 =  ∑ 𝛶𝛶𝑢𝑢𝑢𝑢  . 𝑖𝑖𝑣𝑣𝑛𝑛

𝑣𝑣=1     (9)   

 
Figure. 5 Depiction of LA 

The output component 𝜂𝜂𝑢𝑢  is calculated by 
calculating the weighted sum of linearly changed 
input components. Variable vectors 𝑤𝑤𝑦𝑦, 𝑤𝑤𝑥𝑥 and 𝑤𝑤𝑗𝑗 
are varied for all layers and attention heads. e 𝑧𝑧𝑢𝑢,𝑣𝑣 
matrix defines the definitive positional integration of 
input variables 𝑖𝑖𝑢𝑢 and 𝑖𝑖𝑣𝑣 which is improved through 
backward propagation and can be trained using 𝑦𝑦𝑢𝑢𝑢𝑢

𝑗𝑗 .  
The fig. 5 depicts the LA mechanism. 

3.1.3 Channel Guide Attention (CGA) 

The CGA effectively reduces superfluous textual 
data, narrows the semantic gap and enhances feature 
concatenation efficiency in skip connection. The 
ability of MHSA is to determine the associative 
between feature and semantic positions, as depicted 
in Fig. 6. The lower level input from encoder feature 
𝐻𝐻𝑙𝑙𝑙𝑙𝑙𝑙 ∈ ¡𝑐𝑐∗ℎ∗𝑤𝑤  is initially moulded into 𝑋𝑋𝑙𝑙𝑙𝑙𝑙𝑙 ∈
 ¡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒∗(ℎ∗𝑤𝑤)∗𝑑𝑑𝑑𝑑𝑑𝑑  and 𝐽𝐽𝑙𝑙𝑙𝑙𝑙𝑙 ∈ ¡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒∗(ℎ∗𝑤𝑤)∗𝑑𝑑𝑑𝑑𝑑𝑑  
respectively. After that, channel selection (CS) to 
extract essential 𝐾𝐾 channels.   

The significant channels of 𝑇𝑇 are selected using 
CS after reformulating the high-level input from the 
decoder feature 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ ∈ ¡𝑐𝑐∗ℎ∗𝑤𝑤 . A context-
dependent attention map 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 ∈ ¡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒∗(ℎ∗𝑤𝑤)∗(ℎ∗𝑤𝑤)  
is generated by performing a multi-head scaled dot-
product function with softmax normalization among 
𝑇𝑇  and the transformed variant of 𝐽𝐽 , indicating the 
global factors with respect to spatial attributes. 

Multiplying the map 𝐶𝐶 by J would provide an 
aggregate of values with weights determined by 𝐽𝐽. 
The last step in determining the CGA output is to 

 
Figure. 6 Illustration of CGA 
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merged together to  adjusted the low and high level 
features, i.e., 𝐻𝐻𝑐𝑐𝑐𝑐𝑐𝑐 ∈ ¡(2∗𝑐𝑐)∗ℎ∗𝑤𝑤 . The CS can be 
formulated as follows,  
 
𝒵𝒵𝑐𝑐 =  1

ℎ∗𝑤𝑤
 ∑ ∑ �𝐻𝐻𝑐𝑐(𝑢𝑢, 𝑣𝑣)�,𝒵𝒵 ∈¡𝑐𝑐 ,𝐹𝐹 ∈¡𝑐𝑐∗ℎ∗𝑤𝑤  𝑤𝑤

𝑣𝑣=1
ℎ
𝑢𝑢=1

                 (10) 
𝐶𝐶𝑤𝑤 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑤𝑤.𝒵𝒵 ),𝑤𝑤 ∈ ¡𝑐𝑐∗𝑐𝑐 ,𝐶𝐶𝑤𝑤 ∈ ¡𝑐𝑐 
                 (11) 

𝐻𝐻� = 𝐶𝐶𝑤𝑤 > 𝐻𝐻,𝐻𝐻 ∈¡𝑐𝑐∗ℎ∗𝑤𝑤     (12) 

The task-correlated channel-wide feature vector 
𝐶𝐶𝑤𝑤. At last, the key channel feature 𝐻𝐻� is calculated 
by multiplying the input feature  𝐻𝐻  by 𝐶𝐶𝑤𝑤 . By 
continuously optimising the weight 𝑤𝑤 in the model 
training tasks in which the most important channel 
feature is identified with high precision. 

3.1.4 Loss Function 

The End-to-end training is used by SLST-U-Net 
throughout the training stage. The binary cross 
entropy loss (𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏)  and Dice Loss ( 𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)  are 
examples of entropy losses. The following is the 
expression for determining 𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏 and 𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑.  

 
ℓ𝑏𝑏𝑏𝑏𝑏𝑏 = −  ∑ (𝑠𝑠𝑢𝑢 log(𝑧𝑧𝑢𝑢))𝑛𝑛

𝑣𝑣=1 + (1 − 𝑠𝑠𝑢𝑢)log (1 −
𝑠𝑠𝑢𝑢))                 (13) 
 
ℓ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 1 −  ∑ 𝑠𝑠𝑢𝑢𝑧𝑧𝑢𝑢+ 𝜇𝜇 𝑛𝑛

𝑣𝑣=1
∑ (𝑠𝑠𝑢𝑢𝑧𝑧𝑢𝑢)+ 𝜇𝜇 𝑛𝑛
𝑣𝑣=1

                                    (14) 
 
ℓ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  𝛼𝛼 .  𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏 +  𝛽𝛽 .  𝐿𝐿𝑏𝑏𝑏𝑏𝑏𝑏                              (15) 
 

Where, 𝑧𝑧𝑢𝑢  is the confidence score for pixel 𝑢𝑢 
depending on the estimations, 𝑠𝑠𝑢𝑢 is the real value for 
pixel 𝑢𝑢 and 𝑛𝑛 is the cumulative pixel numbers in the 

images. In this system, 𝛼𝛼 and 𝛽𝛽 have values of 0.6 
and 𝜇𝜇 =  10−5 respectively. 

3.2 Swin Transformer block in Semantic Feature 
module for Image Segmentation 

In this model, ST block is used in the U-net 
encoder and decoder part, which can be effective for 
medical imagine segmentation tasks when combined 
with U-Net for finer spatial and semantic data 
details. The ST encoder consists of 𝑙𝑙 identical units, 
each composed of Multi-Layer Percepton (MLP) 
and MHSA, with a residual association and a 
LayerNorm (𝑙𝑙𝑙𝑙)  layer is executed before and 
every MSA component and every MLP. As a result, 
the Transformer encoder's 𝑙𝑙 −layer output 𝑞𝑞𝑙𝑙 may be 
written as follows: 

 
𝑞𝑞𝑙𝑙� = 𝑀𝑀𝑀𝑀𝑀𝑀(ln(𝑞𝑞𝑙𝑙−1) + 𝑞𝑞𝑙𝑙−1)              (16) 

 
 𝑞𝑞𝑙𝑙 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑙𝑙𝑙𝑙(𝑞𝑞�𝑙𝑙) + 𝑞𝑞�𝑙𝑙  )                     (17) 

 
The traditional transformer structure is deemed 

unsuitable for complex estimations and high-quality 
imaging applications due to its exponential 
computational cost. ST recommends Window-based 
MHSA (W-MHSA) or Shifted Window MHSA 
(SW-MHSA) for effective simulation. W-MHSA 
constrains 𝑚𝑚 ∗𝑚𝑚  patches and partitions input 
features into windows, with self-reflection only 
during operational periods. The 𝑙𝑙𝑡𝑡ℎ  layer of W-
MHSA and MLP provide the following outputs 
denoted by 𝑞𝑞𝑙𝑙�  and  𝑞𝑞𝑙𝑙 respectively, 

𝑞𝑞𝑙𝑙� = 𝑊𝑊 −𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑙𝑙𝑙𝑙(𝑞𝑞𝑙𝑙−1)) + 𝑞𝑞𝑙𝑙−1             (18) 
 

𝑞𝑞𝑙𝑙 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑙𝑙𝑙𝑙(𝑞𝑞�𝑙𝑙)) + 𝑞𝑞�𝑙𝑙  )              (19) 
 

 

 
(a)                                                                                  (b) 

Figure. 7: (a) Architecture of ST model and (b) Two successive ST i.e., W-MHSA and SW-MHSA 
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Figure. 8 Structure of Proposed SLST-U-Net Model 

 
SW-MSA is a batch-processing method that 

maintains identical number of batch windows in a 
fixed partitioning scheme, while both W-MSA and 
SW-MSA are used for relative location bias. The 
results of the SW-MSA and the MLP blocks might 
be expressed in the form of 
 

𝑞𝑞�𝑙𝑙−1  = 𝑆𝑆𝑆𝑆 −𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑙𝑙𝑙𝑙(𝑞𝑞𝑙𝑙−1)) +𝑞𝑞𝑙𝑙−1        (20) 
 

𝑞𝑞𝑙𝑙+1 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑙𝑙𝑙𝑙(𝑞𝑞�𝑙𝑙)) + 𝑞𝑞�𝑙𝑙  )                           (21) 
 

The complete structure of SLST-U-Net a 
medical image segmentation model is shown in Fig. 
8. The ST blocks in subsequent stages function in 
the same way, with the exception that their input is 

the output of the previous stage. Fig. 7(a) depicts the 
structure of ST model and Fig. 7(b) depicts the two 
successive models of ST, W-MHSA and SW-
MHSA with regular and shifted windowing 
configurations, respectively. 
[a] Encoder: The model segmented images using 
U-Net architecture and extracted features using ST 
encoder. A linear embedding layer sliced the input 
medical images into 𝐻𝐻 𝑆𝑆� ∗ 𝐻𝐻 𝑆𝑆�   non-overlapping 
patches, tokenized, and projected to dimension 𝑘𝑘 . 
Tokens were sent into ST, a four-phase system with 
a fixed block count, which decreased as the network 
expanded, with the first three steps involving a patch 
merging layer. This technique combines features of 
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all sets of 2 ∗ 2 neighbouring patches and performs 
a linear layer on the channel-dimensional combined 
features, lowering many tokens 2 ∗  2 =  4,2 ∗
 down-sampling and raising the output dimension by 
2. The resulted resolutions of 4 levels are  𝐻𝐻 𝑆𝑆� ∗
𝐻𝐻
𝑆𝑆� , 𝐻𝐻 2𝑆𝑆� ∗ 𝐻𝐻 2𝑆𝑆� ,  𝐻𝐻 4𝑆𝑆� ∗ 𝐻𝐻 4𝑆𝑆�  and 𝐻𝐻 8𝑆𝑆� ∗

𝐻𝐻
8𝑆𝑆�  with dimensions of 𝑘𝑘, 2𝑘𝑘, 4𝑘𝑘,𝑎𝑎𝑎𝑎𝑎𝑎 8𝑘𝑘 , 

correspondingly. 
[b] Decoder: The proposed decoded method uses 
upsampling, skip connection, and a ST block to 
improve decoding speed. The input is level 4 
encoder output, with features up-sampled and 
combined with disconnected feature maps. The ST 
block develops long-term relationships and global 
context connection. Low-level attributes with ranges 
of ℎ ∗ 𝑤𝑤  and 𝐻𝐻 2� ∗ 𝐻𝐻 2�  are used to generate the 
𝐻𝐻

4� ∗ 𝐻𝐻 4� output with three layers like 3 ∗ 3 
convolutional layer, group normalization layer, and 
ReLU layer. The skip connection is used to obtain 
ultimate mask predictions. 
[c] Multi-Scale Feature Representations: The 
model proposes a multi-scale ST for feature 
extraction, enhancing segmentation efficiency and 
strengthening patch relationships. It employs a main 
extend with a patch size of 4 and an additional 
branch with a patch size of 8. As a consequence, the 
encoding branch produces results with resolutions of 
𝐻𝐻

4� ∗ 𝐻𝐻 4� ,  𝐻𝐻 8� ∗ 𝐻𝐻 8�  , 𝐻𝐻 16� ∗ 𝐻𝐻 16�  and 𝐻𝐻 32� ∗
𝐻𝐻

32�  and H⁄32*H⁄32, while the decoding side 
produces output with values of 𝐻𝐻 8� ∗ 𝐻𝐻 8�  , 𝐻𝐻 16� ∗
𝐻𝐻

16�  , 𝐻𝐻 32� ∗ 𝐻𝐻 32�  and 𝐻𝐻 64� ∗ 𝐻𝐻 64� . 
[d] Transformer Conjoint Integrative (TCF) 
Module: The MHSA method enhances image 
segmentation by creating a TCF module after 
obtaining encoder features, generating a token based 
on one branch's feature map, and focusing TCF as 
the primary focus of the ST model. Assume, for 
results of 2 branches from an equal level 𝑢𝑢 (𝑢𝑢 =
1,2,3,4)  represented by ℎ𝑎𝑎 = [𝐻𝐻1𝑢𝑢,𝐻𝐻2𝑢𝑢, … ,𝐻𝐻ℎ∗𝑤𝑤𝑢𝑢 ] ∈
 ℝ𝑐𝑐∗(ℎ∗𝑤𝑤)   (primary branch) and 𝑔𝑔𝑢𝑢 =

�𝐺𝐺1𝑢𝑢,𝐺𝐺2𝑢𝑢, … ,𝐺𝐺ℎ
2∗
ℎ
2

 𝑢𝑢 � ∈  ℝ𝑐𝑐∗(ℎ2∗
ℎ
2)   (complementary 

branch), correspondingly. Afterward, the 
transformation result of 𝑔𝑔𝑢𝑢 is obtained as follows, 
 

𝐺𝐺𝑢𝑢� = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑔𝑔𝑢𝑢))             (22) 
 

𝐺𝐺𝑢𝑢�  ∈  ℝ𝑐𝑐∗1 is a 1D average pooling (Avgpool) 
layer which is preceded by a flatten procedure in Eq. 
(22),  In order to engage with Hu at the pixel level, 
the token 𝐺𝐺𝑢𝑢�  stands for the global conceptual data of  

𝑔𝑔𝑢𝑢� . For the computation of global SA, 𝐻𝐻𝑢𝑢  is 
combined with 𝐺𝐺𝑢𝑢�  to produce a stream of 1 +  ℎ ∗
 𝑤𝑤 tokens. 

 
𝐻𝐻𝑢𝑢� = 𝑆𝑆𝑆𝑆 ([𝐺𝐺𝑢𝑢� , ]ℎ1𝑢𝑢,ℎ2𝑢𝑢, … ,ℎℎ∗𝑤𝑤𝑢𝑢 )             (23) 

 
     = 𝑆𝑆𝑆𝑆 (ℎ1𝑢𝑢,ℎ2𝑢𝑢, … ,ℎℎ∗𝑤𝑤𝑢𝑢 ) ∈  ℝ𝑐𝑐∗(1∗ℎ∗𝑤𝑤)     (24) 

 
 𝐻𝐻�𝑜𝑜𝑜𝑜𝑜𝑜𝑢𝑢 = (ℎ1𝑢𝑢,ℎ2𝑢𝑢, … ,ℎℎ∗𝑤𝑤𝑢𝑢 ) ∈  ℝ𝑐𝑐∗(1∗ℎ∗𝑤𝑤)      (25) 

 
Where, 𝑆𝑆𝑆𝑆 is analogous to Eq. (16) and (17) and 

𝐻𝐻�𝑜𝑜𝑜𝑜𝑜𝑜𝑢𝑢  is the small-scale branch's ultimate output in 
TCF. This method establishes relations among each 
token in 𝐻𝐻𝑢𝑢 =  [ℎ1𝑢𝑢,ℎ2𝑢𝑢, … ,ℎℎ∗𝑤𝑤𝑢𝑢 ] ∈  ℝ𝑐𝑐∗(1∗ℎ∗𝑤𝑤)  and 
the complete 𝑔𝑔𝑢𝑢 allowing for the optimized features 
to access coarse-grained data from the massive 
branch. In order to improve segmentation efficiency, 
TCF in ST module might deliver efficient feature 
fusion of multi-scale branch. 

The segmented CXR and CT images from 
SLST-U-Net are inputted into InceptionResNetV2 
and Xception of EDEPLDP to identify informative 
and discriminative features respectively. Then, the 
extracted deep features are fed into the softmax 
layer of conGRU-LSTM for lung disease 
classification. [8]. Hence, the proposed SLST-U-
Net+EDEPLDP model effectively resolves the low-
level localization issues in U-Net based 
segmentation for CT and CXR images for the 
efficient prediction of lung diseases and its types.  

4. Author name(s) and affiliation(s) 
4.1 Dataset description: In this study, two 

benchmark databases are considered which is 
briefly illustrated below. 

CXR data: The CXR dataset [17], which includes 
112,120 frontal-view X-ray images of 30,805 
patients with 14 thoracic pathologies, includes 
bacterial or viral diseases, chronic obstructive lung 
disease, and COVID-19 and non-Covid chest X-ray 
instances [18]. For experimental purposes, only five 
pathologies, atelectasis, infiltration, pneumonia, 
along with COVID-19 and non-Covid, are 
considered. 
CT data: As like CXR data, CT images were also 
categorized into five diseases: atelectasis, infiltration, 
pneumonia, COVID-19, and non-COVID. This 
study analyzed various open public portals to collect 
CT data for experimental purposes. The lung 
atelectasis images were obtained from [19], COVID 
and non-COVID (Normal) images from [20], viral 
pneumonia from [21], and infiltration from [22].  
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Table 2. Observed CXR and CT scans 
 

  Diseases\ 
Images 

observed 

CXR Images CT Images 
Number of 

CXR images 
Considered 

Training 
Images         
(70 %) 

Testing 
Images         
(30 %) 

Number of 
CXR images 
Considered 

Training 
Images         
(70 %) 

Testing 
Images         
(30 %) 

Covid-19 1345 942 403 1002 702 300 
Normal  1345 942 403 984 689 295 

Pneumonia 1443 1011 432 1762 1234 528 
Atelectasis 290 203 87 310 217 93 
Infiltrate 270 189 81 260 182 78 

 
 

Table 3. Parameter settings for existing and proposed model 
Framework Parameters Range Framework Parameters Range 

CNN [7] 

No. of convolutional 
layer 3 

LDDNet  
[16] 

No. of 
convolutional 
layer 

3 

Max Pooling 2 Learning rate 0.001 
Stride  2 Batch size 96 
No. of. Epochs 200 Epochs 30 
Dropout 0.5 Optimizer SGD 

Optimizer Adam Loss Function  Cross Entropy 
(CE) 

Learning rate 0.0001 Dropout  0.5 

Batch Size 32 Activation 
Function ReLU 

E2E-DNN 
[12] 

No. of LSTM units 64 

EDepLDP 
[8] 

No. of 
convolutional 
layer 

3 

Activation function tanh Learning Rate 0.001 
Stride size 2 Batch Size 128 
Optimizer Adam Optimizer Adam 
Batch size 64 Epochs  25 

No. of epochs 18 Activation 
Function ReLU 

Learning rate 0.001 Stride 2 
Dropout 0.4 Dropout  0.7 

LungNet22 
[13] 

No. of convolutional 
layer 3 Loss Function  BCE 

Pooling size  2 

Proposed 
SLST- 

U-Net + 
EDEPLDP 

Layers  3 Encoding; 3 
Decoding 

Learning rate 0.000001 
No. of 
convolutional 
layer 

3 

Batch size 128 Kernel Size  3 
Optimizer Adam Learning Rate 0.01 
Activation Function ReLU Dimensions 8 
No. of epochs 100 Optimizer SGD 
Dropout 0.9 Momentum  0.9 

EfficientNe
t-SE [14] 

No. of. Dimensions 1408 Weight Decay  0.0005 
Learning rate 0.0001 Stride  2 
Batch size 64 Epochs 72 
Optimizer Adam Batch Size 256 
Epochs 15 Dropout  0.7 
Dropout 0.001 Loss Function  BCE 

Loss Function  
Binary Cross 
Entropy 
(BCE) 
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Table 2 lists the total number of CXR and CT scans 
observed in the dataset used for training and testing. 
Performance evaluation: This study investigates 
the effectiveness of the SLST-U-Net+EDEPLDP 
model using CXR and CT images in MATLAB 
2019a. In both CXR and CT datasets, 70% of the 
images are used for training, while 30% are used for 
evaluation in each category of lung disorders. 

A quantitative performance is conducted to 
evaluate the efficiency of SLST-U-Net+EDEPLDP 
model by comparing with as CNN [7], E2E-DNN 
[12], LungNet22 [13], EfficientNet-SE [14], 
LDDNet [16] and EDepLDP [8] which are also 
implemented and tested using the above-considered 

datasets. Table 3 lists parameter settings for the 
proposed SLST-U-Net + EDEPLDP and existing 
models. 

The assessment measures used to evaluate the 
effectiveness of the proposed and current models in 
the both CXR and CT are briefly discussed. 

4.2.1 Accuracy: It is the proportion of correctly 
classified instances in each class of lung disorders 
over the total number of samples examined. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

              (26) 

 

 
Figure. 9 Accuracy Comparison for lung disease category using CXR images 

 

 
Figure. 10 Accuracy Comparison for lung disease category using CT images 

 

 
Figure. 11 Precision Comparison for lung disease category using CXR images 
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In above Eq. (26), TP (True Positive) is the result 
in which the model correctly labels the lung disease 
categories as themselves, for example, pneumonia is 
categorised as pneumonia.  The result indicates that 
the classifier successfully identifies the Covid-19 as 
Covid-19 is defined as TN (True Negative). The 
term FP (False Positive) refers to the result in which 
the model incorrectly identifies lung disorders 
(AtelectasisCovid-19InfiltrateNormalPneumonia) as 
Atelectasis. The result FN (False Negative) 
demonstrates that the model incorrectly labels the 
Normal as Infiltrate. 

4.2.2 Precision: It is the proportion of correctly 
classified instances of lung disease types at the TP 
and FP rates. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇 
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

                  (27) 

4.2.3 Recall: It is the ratio of instances of accurately 
defined lung illnesses at TP and FN rates. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =   𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇  + 𝐹𝐹𝐹𝐹

                                          (28) 

 

 
Figure. 12 Precision Comparison for lung disease category using CT images 

Figure. 13 Recall Comparison for lung disease category using CXR images 
 

Figure. 14 Recall Comparison for lung disease category using CT images 
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Figs. 9 and 10 show the accuracy of various 
models in diagnosing Covid-19, Normal, Pneumonia, 
Atelectasis, and Infiltrate using CT and CXR. The 
SLST-U-Net+EDEPLDP model outperforms other 
models in lung condition classification due to its 
increased learning instances from CXR and CT 
images. For example, in the classification of 
atelectasis, the accuracy of SLST-U-Net+EDEPLDP 
is 24.28% and 28.51% higher than CNN, 14.29% 
and 23.69% higher than E2E-DNN, 11.27% and 
18.44% higher than LungNet22, 6.9% and 10.99% 
higher than EfficientNet-SE, 5.7% and 6.96% higher 
than LDDNet, and 3.51% and 3.13% higher than 
EDepLDP for the CXR and CT images respectively. 

Figs. 11 and 12 indicates the precision (in%) 
achieved by CNN, E2E-DNN, LungNet22, 
EfficientNet-SE, LDDNet, EDepLDP, and SLST-U-
Net+EDEPLDP models in identifying Covid-19, 
Normal, Pneumonia, Atelectasis, and Infiltrate using 
CT and CXR images, accordingly.   It is found that 
the precision of SLST-U-Net+EDEPLDP for every 
category of lung illness is superior to that of other 
categorisation models from CXR and CT images for 
each diseases classes. In the case of Covid 
categorization, the precision of SLST-U- 
Net+EDEPLDP is 19.53% and 24.56% higher than 
CNN, 16.15% and 18.34% higher than E2E-DNN, 
13.85% and 13.71% higher than LungNet22, 8.37%    
and 8.67% higher than EfficientNet-SE, 4.60% and 
6.09% higher than LDDNet, 1.52% and 3.13% 
higher than EDepLDP for CXR and CT images. 

Figs. 13 and 14 show the recall (%) achieved by 
existing and proposed models when utilising CT and 
CXR images to diagnose different lung disease 
categories such as Covid-19, Normal, Pneumonia, 
Atelectasis and Infiltrate. It is established that the 
recall of SLST-U-Net+EDEPLDP for each category 
of lung illnesses is superior to that of other 
classification models from CXR and CT images for 
each category of diseases. In the case of pneumonia 
classification, the recall of SLST-U-Net+EDEPLDP 
is 24.59% and 25.29% higher than CNN, 19.83% 
and 22.38% higher than E2E-DNN, 16.34% and 
16.29% higher than LungNet22, 11.89% and 
14.24% higher than EfficientNet-SE, 9.17% and 
11.19% higher than LDDNet, and 4.56% and 5.15% 
higher than EDepLDP for CXR and CT images. 

5. Conclusion 
The paper proposes SLST-U-Net+EDEPLDP to 

enhance U-net's low localisation abilities for CT and 
CXR images to identify lung illnesses. This model 
utilizes DMP and LA to distinguish spatial and 
semantic features, while CGA combines spatial and 

semantic data. DMP optimizes edge data 
interpretation and increases objective position 
depiction, while CGA reduces semantic gaps by 
merging spatial texture and semantic data. LA 
improves semantic feature representation and 
location information accuracy, enabling long-range 
contextual information in channel and geographic 
situations. ST efficiently extracts coarse and fine-
grained characteristics from geographical and 
semantic information. The SLST-U-Net+EDEPLDP 
model outperforms traditional segmentation 
methods on CXR and CT images with an accuracy 
of 94.94% and 95.42% for efficient lung diseases 
prediction. 
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