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Abstract: Electroencephalogram (EEG) are the neuro-electrophysiology signals, which are commonly used as a 

diagnostic tool to measure the seizure activity of the brain. The accurate detection and classification of seizures help 

to provide an optimal solution to diagnose the patient. In this research, a hyperparameter tuning with Zebra 

Optimization Algorithm (ZOA) is proposed for the fine tuning of features from EEG signals. The EEG signals are 

taken from the three standard datasets such as Temple University Hospital (TUH) at a rate of sampling signal of 250Hz, 

Bonn University (BU) at a 173.61 Hz sampling rate, and Bern Barcelona (BB) alongside the sampling frequency of 

512 Hz. The EEG signals are pre-processed using Butterworth 8th order filtering method to remove the unwanted 

noise, and de-noised signals are decomposed by the swarm decomposition method. Features like statistic-based 

features, frequency-dependent features, multi-scale wavelet transformation, entropy features, and power spectral 

features are extracted from the decomposition of signals. The extracted features then undergo hyperparameter tuning 

using ZOA followed by feature selection using Enhanced Spatial bound Whale Optimization Algorithm (WOA) with 

the combination of Salp Swarm Algorithm (SSA) hybridized with Lens Opposition-based Learning (LOBL) 

mechanism. The features obtained from the selection algorithm are then fed to hyper parameter optimized Long Short-

Term Memory (LSTM) classifier to classify the normality and abnormality of seizures. The attained outcomes of the 

suggested approach exhibit a better classification rate with 98.43% accuracy on BU dataset, 99.71% accuracy on BB 

dataset, and 98.43% accuracy on TUH dataset. 

Keywords: Electroencephalogram, Enhanced spatial bound whale optimization algorithm, Lens opposition-based 

learning, Long short-term memory, Salp swarm algorithm, Zebra optimization algorithm. 

 

 

1. Introduction 

Epilepsy is a chronological brain disorder that is 

caused by the sudden abnormal synchronous 

discharge behavior in the brain cells. It is the most 

widespread disease among children and adults after a 

stroke [1]. Epilepsy causes a lack of consciousness 

and affects the psychological and neurological 

condition of a person. Seizures are known to be the 

temporary interruption of brain functions that can be 

triggered by abnormal discharge of electrical neurons 

[2,3]. The brain activities are recorded by the neuro 

electrophysiologic signals like 

Electroencephalography (EEG), 

Magnetoencephalography (MEG), and operational 

Magnetic Resonance Imaging (MRI) through which 

the diagnosis and monitoring of seizures can be 

analyzed [4]. Based on the area of the brain that is 

stimulated during seizures, epilepsy is often divided 

into two important classes: partial and generalized. 

The generalized one began in the entire brain as 

opposed to the partial one, which originates from a 

specific area of the brain and lies on one side of the 

cerebral column [5, 6]. In general, abnormal seizures 

are complex to identify as it occurs in the partial part 

of the brain and normal seizures occur in the entire 

brain. The EEG signals have high frequency waves, 
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where the fluctuations of these waves determine the 

nature of seizures (normal or abnormal) and the 

condition of the patient [7,8]. Several Machine 

Learning (ML) and Deep Learning (DL) methods 

have been improved to classify as well as determine 

the seizure types, but are limited to high 

computational complexity, vanishing gradient, 

classification errors, and time complexity [9]. Early 

detection and diagnosis increase the survival rate of 

patients suffering from epilepsy seizures. The EEG 

signals from standard datasets consist of various 

frequency bands. Hence to maintain uniform 

sensitivity, the signals are decomposed using 

decomposition methods [10-12]. The decomposed 

signals are then extracted for generating optimal 

features to select discriminative features. The 

selected features are then classified for predicting the 

normality and abnormality conditions of epilepsy 

seizures [13]. However certain limitations such as 

computational and time complexity, overfitting of 

data, and classification errors of existing methods 

have left scope for further investigations of seizure 

detection and classification [14, 15]. The major 

contributions of this research are described below: 

• Bio-electrical artifacts which are not necessary 

for analysis are to be removed and the external 

interpretation analysis of EEG signals which are 

collected has to be done with the help of a 

Butterworth 8th-order filter. It has the advantage 

of roll-off around the cut-off frequency and 

maintains the uniform sensitivity of wanted 

signals. 

• A decay method related to swarm intelligence is 

used to decompose the denoised signals which 

reflects the frequency variations in the signals. 

the set of optimal features is then extracted such 

as statistic-based features, frequency-dependent 

features, features derived from multi-scale 

wavelet transformation, features concerning 

entropy measure, and power spectral density. 

• The obtained features are then fine-tuned with 

hyper parameter tuning process using ZOA. 

These optimized features are then selected using 

WOA with SSA to achieve balance in the process 

of the exploitation stage and exploration stage of 

the algorithm and also utilized LOBL strategy to 

avoid the tendency to fall into local optimum.  

• The optimal features are then fed into LSTM to 

categorize standard and abnormal seizures. The 

LSTM with a gating mechanism is used in this 

research, which has the advantage of avoiding the 

vanishing gradient problem.  

The remaining article is coordinated as follows: 

Section 2 offers the literature survey on existing 

methods, Section 3 briefs the proposed methodology, 

Section 4 represents the output results and 

discussions, and the conclusion of this research work 

is summarized in section. 

2. Literature review 

Albaqami [16] implemented a multiclass seizure 

classification system using dual-tree complex 

wavelet transform and ML on TUH dataset, where 

the features of these signals were extracted using 

Wavelet Transform. The classification of these 

features was performed using Light Gradient 

Boosting Machine (LGBM) to classify seven types of 

seizures and attained better classification results 

when compared to existing wavelet-based seizure 

classification methods. However, the tree-leaf-wise 

split in LGBM causes overfitting of the data.  

Chirasani and Manikandan [17] presented a Deep 

Neural Network (DNN) for classifying epileptic 

seizures utilizing a hierarchical attention system to 

overcome the computational complexity of existing 

techniques. The classification was performed on raw 

EEG signals and the features of the signal were 

weighted utilizing hierarchical attention system. 

These features were classified using SVM classifier 

and 1D CNN. The obtained output results achieved 

better classification accuracy compared to the 

existing DNN methods when evaluated on BU 

dataset. However, the proposed framework still has 

minor computational complexity.  

Zhao [18] presented a novel method for 

classifying epileptic seizure onset zone (SOZ) and 

non-SOZ based on the partial annotation using 

intracranial electroencephalogram (iEEG) data to 

overcome the time-consuming task in existing 

methods. A Positive Unlabeled (PU) binary classifier 

was introduced to classify little size of labeled data 

and big size of unlabeled data that reduces the 

annotation workload. The obtained classification 

accuracy was better when compared to existing 

methods with the use of PU on BB dataset. However, 

if PU doesn’t know the positive proportion of 

unlabeled data, this proportion error affects the 

classification performance.  

Mishra [19] presented a Discrete Wavelet 

Transform (DWT) and Moth Flame Optimization 

(MFO) based Extreme Learning Machine (ELM) for 

classifying EEG signals for epileptic seizure 

detection. The DWT transform was used for 

decomposing the signal followed by the calculation 

of the statistical features. Then the classification was 

performed by calculating the optimal parameters of 

the classifier using the MFO algorithm. The final 

classification phase was performed on BU dataset by 
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using achieved better classification accuracy due to 

efficient learning speed, fast convergence, and ease 

of implementation. However, the MFO has 

limitations such as local optima trapping and an 

imbalance between exploration and exploitation. 

Wang and Mengoni [20] presented a Natural 

Language Processing (NLP) approach to predict 

seizures using EEG frequency bands and montage 

selection method. Classifiers namely Random Forest, 

SVM, and Multi-layer perceptron are used for the 

categorization of the EEG signals. The result 

obtained has displayed that the suggested approach 

achieved better classification accuracy with the use 

of NLP when evaluated on TUH, CHB-MIT Dataset, 

the UPenn and Mayo Clinic seizure detection dataset 

compared to existing methods. However, the inability 

of NLP to adapt to new domains limits its 

performance in multiple prediction tasks.  

Murariu [21] presented an automatic system that 

used the Empirical Mode Decomposition (EMD) 

method for the classification of Epilepsy EEG signals 

from BB and Cluj-Napoca datasets. The spectral 

power density of intrinsic mode functions was also 

applied as features to classify the focal and non-focal 

types of signals. These signals were classified using 

KNN and Naïve Bayes classifiers and achieved better 

classification accuracy but the presented approach is 

immune to the connectivity between the electrodes 

and scalp and its subject movement. 

Xin [22] developed an Attention Mechanism-

related Wavelet CNN (AMWCNN) to classify 

epilepsy EEG signals from BU and BB datasets. This 

method was presented to overcome the burden of 

long-term readings of EEG signals by decomposing 

them and obtaining their components in various 

frequency bands using wavelet multi-scale analysis. 

These decomposed signals were given to CNN for 

extraction and classification with the attention 

mechanism and achieved better classification 

accuracy. However, the time consumption is 

relatively more for this approach. 

Abou-Abbas [23] presented an ML based 

approach to classifying seizures and seizure-free data 

from TUH dataset using random forest, KNN, SVM, 

and gradient-boosting decision tree classifiers. The 

spectral power with the limited band and the signal 

complexity were also evaluated to represent the 

abnormalities in capturing and capturing free EEG 

signals. The generalization ability to detect seizures 

and their classification has achieved better results 

with the use of ML classifiers. However, the medical 

frequency sub bands are not considered in this work 

which effects the detection and classification 

accuracy of seizures. 

The common limitations observed from the 

existing methods on classifying epileptic seizures are 

overfitting of the data, computational complexity, 

local optima trapping and an imbalance between 

exploration and exploitation, and more time 

consumption. To overcome these limitations, this 

research has proposed a classification of epileptic 

seizures using LSTM with ZOA. 

3. Methodology 

In epileptic seizure detection, the proposed ZOA-

LSTM network consists of six steps such as data pre-

processing with the help of Butterworth 8th order 

filter; swarm intelligence-based decomposition 

method; features extracted to be statistic based 

features, frequency dependent features, features 

derived from multi-scale wavelet transformation, 

features concerning entropy measure and power 

spectral density are acquired from the decomposition 

of signals, feature selection; feature selection: 

enhanced spatial bound WOA with SSA and LOBL;  

 

 
Figure. 1 Block diagram of the proposed EEG classification 
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hyperparameter tuning optimization: ZOA; and 

classification: LSTM. The workflow of the suggested 

approach is represented in Fig. 1. 

The six steps of the proposed approach are 

described and implemented as given in the further 

sections. 

3.1 Dataset 

Three open-source and publicly available datasets 

such as TUH, BERN, BONN are used in this research 

for classifying raw EEG signals. 

Bern Barcelona (BB): The Bern dataset consists 

of EEG signals of patients suffering from temporal 

lobe epilepsy that are captured by specialized 

electrodes. Based on the channel size the dataset 

contains around 10240 samples, for each file of 

sample size from 512 or 1024Hz. Dataset link: 

https://www.upf.edu/web/mdm-dtic/-/1st-

testdataset?inheritRedirect=true&redirect=%2Fweb

%2Fmdm-dtic%2Fdatasets#.YXK47Z5BzIV 

Bonn University (BU): The BONN dataset 

consists of 4097 samples of EEG signals with a 

sampling rate of 173.61 Hz. Dataset link: 

https://www.google.com/url?q=https://epilepsy.uni-

freiburg.de/&sa=D&source=hangouts&ust=1634995

710030000&usg=AOvVaw0e7ApKfkRdAkSfKOO

MAGmz 

Temple University Hospital (TUH) dataset: 

The TUH dataset consists of 30,000 EEG signals of 

around 10.874 patients from the year 2002 to the 

current year. Dataset link: 

mailto:https://isip.piconepress.com/projects/tuh_eeg/  

3.2 Data pre-processing 

The EEG signals are pre-processed at a frequency 

of 60Hz using 8th order BWF for eliminating two 

types of unwanted noises such as electrical and 

mechanical noises. The maximum order filter is used 

due to its utility to attenuate the gain beyond the 

bandwidth. The continuous value of the 8th order 

filter is measured using Eq. (1). 

 

𝐺2(𝑊) =
𝐺0

2

1+(
𝑗𝑤

𝑗𝑤𝑐
)
2𝑛     (1) 

 

Where, the direct current gain is represented by 

𝐺0 , the cut-off frequency is given by 𝑊𝑐 , and the 

order of the filter is 𝑛. 

3.3 Data decomposition 

The denoised EEG signals are decomposed using 

swarm decomposition method which is an impactive 

decay approach that retrieves the oscillatory elements 

from the multiple elements EEG signals related to the 

swarm filter. The denoised EEG signal is taken as an 

input signal that acts as a prey path to the swarm and 

this hunting step provides the output of the swarm 

trajectory [24]. 

3.4 Feature extraction 

After decomposing the signals, various features 

such as statistic-based features, frequency dependent 

features, features derived from multi-scale wavelet 

transformation, features with respect to entropy 

measure and power spectral density are acquired 

from the decomposition of signals are extracted from 

the signals to perform classification. 

• Statistical features: These features include 

kurtosis, average value of energy, mean value, 

variance value and entropy. The statistical 

features feed the algorithms that are more or less 

elaborate and that manipulate pixels [25]. 

• Frequency features: These features are 

extracted with the signal’s mean frequency, 

where signal size is reduced to improve the time 

complexity and computational complexity of the 

algorithms [26]. 

• Entropy features: These features can distinguish 

between different communication signals 

through state characteristics description of the 

signals. Entropy measures based on Renyi 

computation, tsallis measure, Shannon 

calculation, multiscale permutation, and sure 

value are the various entropies [27]. 

• Spectral features: To enhance the class 

separability without any data loss, these features 

are extracted. Spectral flatness, band power beta, 

band power gamma, band power delta, band 

power theta, band power alpha, ratio band power 

alpha-beta and spectral flux are spectral features 

[28]. 

• Power spectral features: The density of the 

power spectrum is one of the spectral features 

where transforming the EEG signals into power 

spectra enhances the signals’ functionality [29]. 

• Multi-scale wavelet transforms: Energy, 

variance value, zero crossing rate, waveform 

length, and standard deviation measure are the 

type of multi-scale wavelet transforms. These 

features are extracted when the signal contains 

not only the frequency components but also the 

local coordinates information [30]. 

3.5 Feature selection 

After extracting oscillatory features, the features 

are selected using Enhanced spatial bound Whale 

about:blank#.YXK47Z5BzIV
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optimization with the SSA. The working process of 

SSA is improved by the WOA, as SSA tends to fall 

into local optima and also premature convergence. 

The WOA generates a random population of search 

agents for a pre-determined number. With the initial 

iteration, the WOA gradually starts moving alongside 

the top agent. When the top agent drops into a 

domestic optimum, the other agents following the 

leader tend to fall into it automatically. To overcome 

this, a leader system of SSA is initialized to upgrade 

the positions of the inheritance and also to improve 

the exploitation ability of WOA as shown in Eq. (2). 

 

𝑋1,𝑗(𝑡 + 1) =

{
𝑋𝑗

∗(𝑡) + 𝑐1 ((𝑢𝑏𝑗 − 𝑙𝑏𝑗)𝑐2 + 𝑙𝑏𝑖) , 𝑐3 ≥ 0.5

𝑋𝑗
∗(𝑡) − ((𝑢𝑏𝑗 − 𝑙𝑏𝑗)𝑐2 + 𝑙𝑏𝑖) , 𝑐3 < 0.5

  (2) 

 

Where, 𝑋1,𝑗  and 𝑋𝑗
∗(𝑡)  depicts the current 

position of leader and food source in the 𝑗𝑡ℎ 

dimension, 𝑡 represents the number of iterations at 

the present state, 𝑢𝑏𝑗 and 𝑙𝑏𝑗  represents the top and 

bottom bounds in the search space of the 𝑗𝑡ℎ 

dimension, 𝑐2  and 𝑐3  are random independent 

parameters in the range [0,1], 𝑐1 is the balancing 

factor between exploration and exploitation whose 

value decreases non-linearly from 2 to 0 as shown in 

Eq. (3). 

 

𝑐1 = 2𝑒
−(

4𝑡

𝑇
)
2

     (3) 

 

Where, the current quantity of iterations and high 

quantity of iterations are denoted by 𝑡  and 𝑇 . The 

updated spot of the leader is provided by Eq. (4). 

 

𝑋1,𝑗(𝑡 + 1) =
1

2
(𝑋𝑖.𝑗(𝑡) + 𝑋𝑖−1,𝑗(𝑡))   (4) 

 

The symbol  𝑖 ≥ 2 and 𝑋1,𝑗 represents the spot 

of 𝑖𝑡ℎ follower in the 𝑗𝑡ℎ dimension. 

The feature selection is performed by considering 

WOA as the major formation which will be optimized 

by the SSA system and increased by the LOBL 

strategy. The LOBL strategy is used in measuring an 

opposite resolution of the fixed resolution by the 

candidate during the enhancement. The two solutions 

are compared to select the best solution to continue 

the iteration process. According to the LOBL 

principle, while the distance from the object to the 

lens is twice the focal length, an inverted and 

shrinking actual image will be created between one 

and two times the focal length on the alternate side of 

the lens. The mathematical expression of this 

principle is expressed as shown in Eq. (5). 

 
(𝑙𝑏+𝑢𝑏) 2⁄ −𝑥

𝑥∗−(𝑙𝑏+𝑢𝑏) 2⁄
= 𝑘                 (5) 

 

To solve optimization issues in multi-

dimensional Eq. (5) can be modified as shown in Eq. 

(6). 

 

𝑥𝒊
∗ =

𝑙𝑏𝒊+𝑢𝑏𝒊

2
+

𝑙𝑏𝒊+𝑢𝑏𝒊

2
−

𝑥𝑖

𝑘
                 (6) 

 

Where, 𝑥𝒊
∗ represents the opposition resolution of 

𝑥𝑖  in the 𝑖-th dimension, 𝑙𝑏𝒊 and 𝑢𝑏𝒊 are the bottom 

and top bounds of the 𝑖 -th dimensions in the 

exploration space. The standard Opposition-based 

Learning (OBL) which special case of LOBL can be 

expressed as shown in Eq. (7). 

 

𝑥𝒊
∗ = 𝑙𝑏𝒊 + 𝑢𝑏𝒊 − 𝑥𝑖                 (7) 

 

LOBL can provide a dynamic opposition solution 

compared to the OBL. The probability of the 

approach to overcoming the domestic optimum 

condition would be improved by adjusting the 

parameter 𝑘. The non-linear argument 𝑐1 of SSA in 

Eq. (2) is employed with the two strategies of WOA 

namely bubble-net assaulting phase and enclosing 

prey phase to stable the exploitation and exploration 

utility.  

• Fitness Function: The performance of selected 

features is measured by the classification error 

rate as shown in Eq. (8). 

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑟𝑜𝑛𝑔𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
    (8) 

 

The Fitness function used in both WOA and SSA 

is represented in Eq. (9). 

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  𝛼𝛾𝑅(𝐷) + 𝛽
|𝐶−𝑅|

|𝐶|
   (9) 

 

Where, the feature subset is illustrated by 𝑅, the 

total quantity of features is given by 𝐶 , the 

categorization accuracy of condition attribute set 𝑅 

based on decision 𝐷 is given by 𝛾𝑅(𝐷), and 𝛼, 𝛽 are 

the symmetric parameters to the subset length and 

classification accuracy. 

Related to the classification error and chosen 

features, Eq. (9) is transformed into minimization 

problem as displayed in Eq. (10). 
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𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =  𝛼𝐸𝑅(𝐷) + 𝛽
|𝑅|

|𝐶|
              (10) 

3.6 Feature selection 

The objective of hyperparameter optimization is 

to optimiuze the classification execution of EEG 

Epileptic seizures by increasing the hyperparameters 

of LSTM classifier. Hyperparameter tuning is a key 

aspect before performing classification as it yields 

satisfactory results by reducing the loss function. 

Hence for better classification results, the 

optimization of hyperparameter tuning is necessary. 

In this research, the ZOA is used for optimizing the 

parameters such as Dropout [0.1-0.4], Learning Rate 

[0.003-0.1], L2Regularization [0.003-0.1], and Max-

Epoch [5, 10, 15, 20]. Then, the best values of 

hyperparameter are considered by using accuracy as 

a fitness function. ZOA is a metaheuristic approach 

that simulates the foraging attitude and restriction 

approaches of zebras against predators’ attacks. ZOA 

is an effective optimizer that can resolve 

enhancement issues by providing an applicable 

balance between exploitation and exploration. It 

starts by generating random solutions in the 

initialization state and tries to increase the 

classification accuracy till the algorithm meets the 

stopping criteria. The foraging and the defense 

strategy against predators are the two important types 

of behavior of zebras [31]. The natural behavior of 

zebra presented by the ZOA model is mathematically 

simulated in three steps:  

1) Initialization  

2) Foraging behavior and  

3) Strategies to defend predators 
 

1) Initialization 

The ZOA works on the mechanism of optimizing 

based on the population in the search space. Here, 

zebras are considered as population members and 

each one is estimated as a candidate solution to the 

problem. The positions of zebras are randomly 

assigned in the search space and its population matrix 

is illustrated as shown in Eq. (11). 

 

𝑋 =

[
 
 
 
 
𝑋1

⋮
𝑋𝑖

⋮
𝑋𝑁]

 
 
 
 

𝑁×𝑚

=

[
 
 
 
 
𝑥1,1 … 𝑥1,𝑗 … 𝑥1,𝑚

⋮ ⋮ ⋮
𝑥𝑖,1 …

⋮
𝑥𝑁,1 …

𝑥𝑖,𝑗 …

⋮
𝑥𝑁,𝑗 …

𝑥𝑖,𝑚

⋮
𝑥𝑁,𝑚]

 
 
 
 

𝑁×𝑚

  (11) 

 

Where, 𝑋  is the total of zebra inheritance, 𝑋𝑖 

gives the 𝑖𝑡ℎ zebra, 𝑥𝑖,𝑗  is the 𝑗𝑡ℎ problem variable 

which is suggested by the 𝑖𝑡ℎ zebra, 𝑁 is the quantity 

of zebras, and the quantity of determination variable 

is  𝑚. As individual zebra is estimated as resolution, 

the objective function could be measured related to 

each zebra value. Hence the values attained for the 

objective function are given as a vector utilizing Eq. 

(12). 

 

𝐹 =

[
 
 
 
 
𝐹1

⋮
𝐹𝑖

⋮
𝐹𝑁]

 
 
 
 

𝑁×1

=

[
 
 
 
 
𝐹(𝑋1)

⋮
𝐹(𝑋𝑖)

⋮
𝐹(𝑋𝑁)]

 
 
 
 

𝑁×1

              (12) 

 

The symbol F is an objection function vector 

value and its objective function value for 𝑖𝑡ℎ zebra is 

𝐹𝑖 . The least value of zebra is considered the best 

candidate solution for minimization problems and the 

highest objective function value is the best solution 

for maximization problems. The position of the 

zebras is updated in each iteration and the iteration 

process continues until the best candidate solution is 

found.  
 

2) Strategies to defend predators 

The positions of the zebras are updated based on 

the simulation behavior of zebras while searching for 

forage. The plain zebra which is a pioneer gazer 

among all the zebras will be considered as the best 

member of the population which leads other zebras in 

the direction of its position. Hence upgrading the 

zebra’s spot in the foraging stage could be expressed 

statistically as shown in Eqs. (13) and (14). 

 

𝑥𝑖,𝑗
𝑛𝑒𝑤,𝑃1 = 𝑥𝑖.𝑗 + 𝑟. (𝑃𝑍𝑗 − 𝐼. 𝑥𝑖,𝑗)             (13) 

 

𝑋𝑖 = {
𝑋𝑖

𝑛𝑒𝑤,𝑃1,   𝐹𝑖
𝑛𝑒𝑤,𝑃1 < 𝐹𝑖;

𝑋𝑖, 𝑒𝑙𝑠𝑒,
             (14) 

 

Where, 𝑋𝑖
𝑛𝑒𝑤,𝑃1

 gives the updated status of the 

𝑖𝑡ℎ  zebra in the first stage, 𝑥𝑖,𝑗
𝑛𝑒𝑤,𝑃1

 is its 𝑗𝑡ℎ 

dimension value, 𝐹𝑖
𝑛𝑒𝑤,𝑃1

 is the objective function 

value, 𝑃𝑍𝑗 is the pioneer zebra in its 𝑗𝑡ℎ dimension, 

𝑟  is an irregular number among [0,1], and 𝐼  is a 

parameter that belongs to {1,2}. If 𝐼 = 2, then there 

is a high probability of modifications in inheritance 

motion. 
 

3) Phase 2: Defense strategies against predators 

The defense strategy opposed to predators is 

simulated in the second phase by updating the spot of 

zebras in the exploration space. The defense strategy 

of zebra depends on the predators and the strategies 

vary from one predator to the other. It is assumed that 

two scenarios engage through the same probability: 



Received:  December 17, 2023.     Revised: February 19, 2024.                                                                                        86 

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024           DOI: 10.22266/ijies2024.0630.07 

 

1) Zebra chooses an escape strategy when the 

lion assaults the zebra 

2) Zebra choosing an offensive strategy with 

alternate predators attacks the zebra 

The escape strategy in the first scenario is 

mathematically modeled using mode 𝑆1 as shown in 

Eq. (15). 

 

𝑥𝑖,𝑗
𝑛𝑒𝑤,𝑃2 =

{
𝑆1: 𝑥𝑖,𝑗 + 𝑅. (2𝑟 − 1). (1 −

𝑡

𝑇
) . 𝑥𝑖,𝑗,   𝑃𝑠 ≤ 0.5,

𝑆2: 𝑥𝑖,𝑗 + 𝑟. (𝐴𝑍𝑗 − 𝐼. 𝑥𝑖,𝑗),       𝑒𝑙𝑠𝑒,
  (15) 

 

Where,  𝑥𝑖,𝑗
𝑛𝑒𝑤,𝑃2

 is the updated condition of the 

𝑖𝑡ℎ zebra in 𝑗𝑡ℎ dimension, 𝑅 is a constant which is 

equal to 0.001,  repetition contour is 𝑡 , 𝑟  is the 

irregular number between [0,1], 𝑇  is the high 

quantity of iterations, 𝑃𝑠  is the probability of 

choosing one strategy among two between the [0,1] 

interval,  𝐴𝑍𝑗 is the condition of the assaulted zebra 

in the 𝑗𝑡ℎ dimension. 

The offensive strategy in second scenario is 

mathematically modeled using the mode 𝑆2 . The 

position of zebra is decided based on the good 

objective function while updating the zebra’s 

positions. This updating condition is given as shown 

in Eq. (16). 

 

𝑋𝑖 = {
𝑋𝑖

𝑛𝑒𝑤,𝑃2,   𝐹𝑖
𝑛𝑒𝑤,𝑃2 < 𝐹𝑖;

𝑋𝑖,      𝑒𝑙𝑠𝑒,
             (16) 

 

Where, 𝑋𝑖
𝑛𝑒𝑤,𝑃2

 is the trend condition of the 𝑖𝑡ℎ 

zebra related to the second stage, 𝐹𝑖
𝑛𝑒𝑤,𝑃2

 is the 

objective function value. 
 

Pseudocode for ZOA 

Start ZOA 

1. Input: Range of hyperparameters 

2. Put the quantity of iteration (𝑇 = 100) and 

the quantity of zebras’ population (𝑁 = 30) 

3. Preparation a spot of zebras and estimation of 

the objective function 

4. For  𝑡 = 1: 100   

5. Upgrade pioneer zebra (𝑃𝑍) 

6. For 𝑖 = 1: 30 

7. Stage 1: Foraging behavior 

8. Estimate trend conditions of the 𝑖𝑡ℎ  zebra 

utilizing Eq. (12) 

9. Upgrade the 𝑖𝑡ℎ zebra utilizing Eq. (13) 

10. Stage 2: Defense approaches opposed to 

predators 

11. If 𝑃𝑠 < 0.5, 𝑃𝑠 = 𝑟𝑎𝑛𝑑 

12. Approach 1: opposed to lion (exploitation 

phase) 

13. Estimate trend of the 𝑖𝑡ℎ zebra utilizing mode 

𝑆1 in Eq. (14) 

14. Else 

15. Approach 2: opposed to another predator 

(exploration phase) 

16. Estimate trend condition of  𝑖𝑡ℎ  zebra 

utilizing mode 𝑆2  in Eq. (14) 

17. End if 

18. Upgrade the 𝑖𝑡ℎ zebra utilizing Eq. (16) 

19. End for 𝑖 = 1: 30 

20. Save the best candidate resolution achieved 

up to this point. 

21. End for 𝑡 = 1: 100   

22. Output: the better resolution attained by ZOA 

for a provided range of hyperparameters 

Although ZOA can avoid local optima and get a 

global optimization solution, it is necessary to update 

the new population to obtain the best optimal solution. 

3.7 Classification of EEG signals 

The fine-tuned features are classified using the 

LSTM network where the given and output features 

are associated with the regularization of the 

individual layer. Unlike the other classifiers, LSTM 

has the advantage of overfitting problems, the upper 

layer is provided to the chosen features that can 

optimize the features. The LSTM has multiplicative 

cells, which are collected compared to the temporary 

and multiplicative units which consist of various 

characters that handle the data flow in the memory 

segment. The three gates are forgotten gate 𝑓𝑡, input 

gate 𝑖𝑡, and output gate 𝑜𝑡 as shown in Fig. 2 plays a 

significant role in storing the memory components 

and regulates the information flow in and out of the 

cells.  

The forget gate determines which detail to neglect 

from the cell, the input gate chooses that detail to add 

into the cell state, and the output gate gives the final 

output. The processing of nodes in LSTM with three 

gates is given through Eqs. (17)-(22). 
 

 
Figure. 2 Architecture of LSTM 
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𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)               (17) 

 

𝑖𝑡 = 𝜎(𝑊𝑖. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)               (18) 

 

𝐶̃𝑡 = tanh(𝑊𝐶 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)              (19) 

 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶̃𝑡               (20) 

 

𝑜𝑡 = 𝜎(𝑊0. [ℎ𝑡−1, 𝑥𝑡] + 𝑏0)               (21) 

 

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡)                (22) 

 

Where, 𝑓𝑡 denotes forget gate, 𝜎 denotes the sigmoid 

function, ℎ𝑡−1 is the hidden state of the prior layer, 

𝑥𝑡 is the input of the current layer,  𝑊 and 𝑏 are the 

weights and bias state. 𝑖𝑡 is the input gate, 𝐶𝑡 is the 

cell state in the next year, 𝐶̃𝑡  is the intermediate 

temporary state, 𝐶𝑡−1is cell state present in the prior 

layer. 𝑜𝑡 is the output layer and ℎ𝑡 is the hidden state 

of the next layer. The parameter setting for LSTM is: 

150 is the size of the batch, 0.0015 is the Lambda loss 

amount, the learning rate is 0.0025, the hidden layer 

is 32, and the quantity of repetitions is 300. 

4. Results and performance analysis 

The effectiveness of the proposed approach is 

evaluated on MATLAB software on a system setup 

alongside 8-GB RAM and an Intel core i9 processor. 

In this section, the classification results are 

represented in tabular forms and graphical 

representations in terms of accuracy, sensitivity, 

specificity, F1-score, and MCC on sets of data such 

as BB, BU, and TUH. Accuracy is a quantity of 

percentage that is rightly categorized EEG signals 

that are compared to the overall examination. 

Sensitivity and specificity are the amounts of the 

rightly measured percentage of categorized seizures 

and non-seizure signals. F1- score is termed by the 

harmonic mean values of precision and recall, which 

measures values of the features that are empty values. 

The value of MCC ranges from 0 to 1, where 1 is the 

best agreement and 0 is a no agreement. The 

mathematical expression of accuracy, sensitivity, 

specificity, F1-score, and MCC is given from Eqs. 

(23)-(27). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100                    (23) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
× 100                                 (24) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100                                (25) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
× 100               (26) 

 

Whilst, the True Positive and True Negative are 

given by TP and TN, and False Positive and False 

Negative are given by FP and FN.  

 

𝑀𝐶𝐶 =
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
× 100 (27) 

4.1 Performance analysis 

The performance of the LSTM classifier with 

optimized features is analyzed with different 

classifiers like Recurrent Neural Network (RNN), 

 
Table 1. Optimized features on different classifiers for hyperparameter tuning 

BB dataset 

Classifiers Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%) MCC 

RNN 92.15 92.68 92.68 90.98 90.32 

MSVM 72.55 70.23 70.23 71.23 72.54 

Sparse auto encoder 97.15 93.33 93.83 95.00 92.12 

Stacked auto encoder 97.32 97.07 97.75 96.46 97.15 

LSTM 99.71 98.54 98.99 97.63 99.12 

BU Dataset 

RNN 92.45 92.02 93.86 90.64 93.72 

MSVM 58.00 56.91 57.69 56.60 55.42 

Sparse auto encoder 94.54 93.08 91.21 94.82 90.54 

Stacked auto encoder 92.18 93.95 94.54 90.63 91.42 

LSTM 98.43 98.04 97.88 97.09 96.98 

TUH dataset 

RNN 92.45 92.02 93.86 90.64 93.72 

MSVM 58.00 56.91 57.69 56.60 55.42 

Sparse auto encoder 94.54 93.08 91.21 94.82 90.54 

Stacked autoencoder 92.18 93.95 94.54 90.63 91.42 

LSTM 98.43 98.04 97.88 97.09 96.98 
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Table 2. Optimized features on different optimizers for hyperparameter tuning 

BB dataset 

Classifiers Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%) MCC 

PSO 93.40 93.24 94.51 92.06 92.65 

GWO 94.05 93.63 92.93 96.16 95.10 

WOA 90.40 90.53 89.88 90.72 91.25 

SSA 89.39 86.92 88.75 88.14 90.72 

Proposed 99.71 98.54 98.99 97.63 99.12 

BU Dataset 

PSO 93.35 92.82 90.57 91.39 93.65 

GWO 92.87 90.62 91.40 92.48 92.22 

WOA 90.96 89.72 91.41 88.85 90.61 

SSA 89.28 87.34 86.52 86.12 89.26 

Proposed 98.43 98.04 97.88 97.09 96.98 

TUH dataset 

PSO 85.54 85.09 85.05 84.47 86.45 

GWO 90.40 90.29 89.13 88.92 90.84 

WOA 94.50 94.31 94.23 94.72 93.30 

SSA 92.50 93.44 93.25 91.25 92.99 

Proposed 99.53 98.99 99.01 97.54 98.43 

 
Table 3. Retrieved features and the selected features for 

BB, BU, and TUH 

Datasets Extracted features Selected features 

BB 3209 2839 

BU 3829 3028 

TUH 7620 4729 

 

Multi-class Support Vector Machine (MSVM), 

Sparse autoencoder, and Stacked auto encoder in 

Table 1. The proposed LSTM classification achieved 

highest accuracy with 99.71% on BB dataset and 

98.43% on BU and TUH datasets when compared to 

the classifiers such as RNN, MVSM, Sparse auto 

encoder, and Stacked auto encoder. 

Table 2 represents the performance of different 

optimizers on optimized features with 

hyperparameter tuning. The proposed technique has 

achieved the highest accuracy with 99.71% on BB 

dataset, 98.43% on BU and 99.53% TUH datasets 

when compared to the conventional optimizers like 

Particle Swarm Optimization (PSO), Grey Wolf 

Optimization (GWO), Whale Optimization 

Algorithm (WOA), Salp Swarm Optimization (SSO) 

algorithm.  

The retrieved features and the selected features 

for BB, BU, and TUH are illustrated below as shown 

in table 3. 

4.2 Comparative analysis 

The portion provides the execution of the 

suggested ZOA alongside hyperparameter tuning for 

the classification of EEG is evaluated on BU, BB, and 

TUH datasets with the existing research such as 

Hierarchical Attention based CNN [17], Entropy, 

FCNN, & PU [18], Discrete Wavelet Transform and 

Moth Flame Optimization-based Extreme Learning 

Machine (DM-ELM) [19], Complexity and power for 

seizure detection [23] in table 4. 

The limitations of the existing research are 

demonstrated by comparing the results of the 

proposed and the conventional methods in table 4. As 

observed, the existing methods has achieved superior 

accuracy values in classifying epileptic seizures from 

 
Table 4. Comparable analysis of the former approach with the suggested approach 

Methods Accuracy (%) Sensitivity (%) Specificity (%) F1-score (%) 

BU dataset 

Hierarchical Attention based CNN [17] 97.03 97.47 96.04 96.94 

DM-ELM [19] 92.00 91.00 93.00 94.00 

ZOA-LSTM (proposed) 98.43 98.04 97.88 97.09 

BB dataset 

Entropy, FCNN, & PU [18] 76.91 - - - 

ZOA-LSTM (proposed) 99.71 98.54 98.99 97.63 

TUH dataset 

Oscillatory power and complexity [23] 91.07 - - 91.41 

ZOA-LSTM (proposed) 98.43 98.04 97.88 97.09 
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EEG signals compared to proposed method on BU, 

BB, and TUH dataset. The existing Hierarchical 

Attention based CNN [17] has achieved less accuracy 

compared to proposed method due to computational 

complexity. Similarly, the DM-ELM [19] has 

drawback of local optima trapping and an imbalance 

between exploration and exploitation. Entropy, 

FCNN, & PU [18] resulted in poor classification due 

to positive proportion of unlabelled data. Oscillatory 

power and complexity [23] have resulted in the 

average classification due to inconsideration of 

frequency subbands. These limitations have been 

overcome in the proposed method and achieved 

better classification accuracy on the considered 

datasets. 

4.2.1 Discussions 

It is noticed that the suggested ZOA-LSTM has 

succeeded with good results as shown in Table 4 

when compared to existing methods [17] and [19] 

with a 98.43% accuracy, 98.04% of sensitivity, 

97.88% specificity, and 97.09% F1-score on BU 

dataset. On BB dataset, the performance of the 

proposed method has achieved 99.71% accuracy, 

98.54% sensitivity, 98.99% specificity, and 97.63% 

f1- score when compared to the existing method [18]. 

On the TUH dataset, the performance of the proposed 

method has achieved 98.43% accuracy, 98.04% 

sensitivity, 97.88% specificity, and 91.41% f1-score. 

The range of hyperparameters in ZOA is enhanced 

with the hyperparameter tuning and has overcome the 

limitations of existing methods such as 

computational complexity, classification error, the 

imbalance between exploration and exploitation, and 

data overfitting by achieving an exceptional set of 

optimal features for efficient classification of EEG 

signals to predict epileptic seizures. 

5. Conclusion 

To detect epilepsy seizures from EEG signals, an 

effective classification with hyperparameter tuning is 

proposed in this research. The hyperparameter tuning 

is performed with the ZOA algorithm to obtain the 

exceptional set of optimal features for classifying 

normal and abnormal seizures. Three publicly 

available datasets such as BB, BU, and TUH are 

considered for EEG signals of different frequencies. 

The proposed ZOA-LSTM classification achieved 

better output results on three datasets when compared 

to the existing methods such as Hierarchical 

Attention based CNN, DM-ELM, Entropy, FCNN, & 

PU classification method, Oscillatory power and 

complexity detection method 98.43% accuracy, 

98.04% sensitivity, 97.88% specificity, and F1-score 

of 97.09%. Although ZOA can avoid local optima 

and get a global optimization solution, the future 

work focuses on the population updating mechanism 

as it is necessary to update the new population for the 

best optimal solution. 

 

Notations: 

Variables Notation 

𝐺0 Direct current gain 

𝑊𝑐 Cut-off frequency 

𝑋1,𝑗 Current position of the leader 

𝑋𝑗
∗(𝑡) Current position of food in 𝑗𝑡ℎ dimension 

𝑢𝑏𝑗 Upper bound of 𝑗𝑡ℎ dimension in search 

space 

𝑙𝑏𝑗 Lower bound of 𝑗𝑡ℎ dimension in search 

space 

𝑐1 balancing factor between exploration and 

exploitation 

𝑋1,𝑗 Position of 𝑖𝑡ℎ follower in the 𝑗𝑡ℎ 

dimension 

𝑅 Feature subset 

𝐶 Total quantity of features 

𝛾𝑅(𝐷) categorization accuracy of condition 

attribute set 𝑅 based on decision 𝐷 

𝛼, 𝛽 Symmetric parameters 

𝑋𝑖 𝑖𝑡ℎ zebra 

𝑥𝒊
∗ Opposite resolution of  𝑥𝑖  in 𝑖𝑡ℎ 

dimension 

F Objection function value  

𝑋𝑖
𝑛𝑒𝑤,𝑃1

 Updated status of 𝑖𝑡ℎ zebra 

𝐹𝑖
𝑛𝑒𝑤,𝑃1

 Objective function value 

𝑃𝑍𝑗 pioneer zebra in 𝑗𝑡ℎ dimension 
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