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Abstract: The key expansion algorithm is an important part of any symmetric block cipher system since its 

effectiveness directly impacts the security of the entire block cipher; if it is not strong enough, the whole cryptosystem 

could be broken. Therefore, the round keys must be generated in a very secure way so that they cannot be attacked at 

all. Despite its great importance, cryptographic algorithm designers were not as interested in creating a secure round 

keys generation algorithm as they were in encryption itself. In this regard, designing a novel, simple, and flexible key 

expansion algorithm that generates round keys with secure characteristics is the aim of this research.  The proposed 

Key Expansion algorithm is based on Dynamic Mealy Machine, 3D Logistic Map, and Protein Sequence (KE-

DMM3DLMPS). The strength of the proposed KE-DMM3DLMPS algorithm is tested using flexibility, the NIST 

SP800-22 randomness test suite, histogram analysis, key space analysis, correlation coefficient, hamming distance, 

number of bit change rate, initial key sensitivity, confusion and diffusion, and differential attack. In comparison to 

some existing algorithms, experimental results showed that the generated round keys by the proposed KE-

DMM3DLMPS algorithm passed all the NIST tests with higher randomness, a uniform and ideal distribution of the 

amino acids present in each round key, and a higher key space of up to 20 × 2471.  Furthermore, the KE-DMM3DLMPS 

avoids the linear relationship between the master secret key and the generated round keys and is capable of effectively 

blocking differential attacks. The proposed algorithm successfully adheres to key cryptographic principles such as 

irreversibility, independence, the strict avalanche effect, confusion, and diffusion. Through comprehensive testing and 

comparisons, the derived conclusion asserts that our algorithm stands as an efficient and secure solution. Its 

applicability extends to any symmetric block cryptosystem, with the primary goal of enhancing encryption and 

bolstering security. 

Keywords: Key expansion, Symmetric block cipher, 3D logistic map, Mealy machine, Protein sequence, NIST tests, 

Key space, Initial key sensitivity, Irreversibility, Independence, Strict avalanche effect. 

 

 

1. Introduction 

Security is crucial in the storage and transmission 

of information across networks, ensuring that it is 

protected and delivered in a secure manner between 

different locations [1]. Therefore, ensuring secure 

communication is an essential prerequisite for any 

transactions conducted across networks. 

Cryptography plays a crucial role in guaranteeing the 

secure transmission of data by employing security 

measures such as authentication, data integrity, non-

repudiation, access control, and confidentiality. Data 

confidentiality is the safeguarding of sensitive data to 

prevent unwanted access by external entities [2]. 

Cryptography offers a means of safeguarding 

confidential data by transforming it into 

incomprehensible form, which can only be 

deciphered by the authorized recipient to retrieve the 

original information. The act of transforming plain, 

readable information into coded, unreadable material 

using a specific key is referred to as the encryption 

process. Conversely, the act of decoding the 

encrypted text back into its original form is known as 

the decryption process [1]. The creation of a 

completely secure cryptographic system is 
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challenging due to the persistent efforts of 

cryptanalysts who are always attempting to 

compromise any existing cryptographic systems[3]. 

Cryptographic systems can be classified into three 

main types: symmetric cipher system, which uses a 

secret key for both encryption and decryption, 

asymmetric cipher system, which uses a public key 

for encryption and a private key for decryption and 

hashing function. Moreover, the symmetric cipher 

system can be categorized into block and stream 

ciphers based on the combination of message bits. 

Symmetric block cipher system consists of five 

primary components: plaintext, encryption algorithm, 

ciphertext, decryption algorithm, and key expansion 

algorithm(KEA)[4]. The key must possess sufficient 

strength and length to prevent it from being 

compromised through a brute-force attack[5]. In the 

present day, it is advisable to utilize a minimum of a 

128-bit key for symmetric algorithms[6]. In a 

symmetric block cipher system, before starting the 

encryption or decryption process, a key called master 

secret key is used to derive the required number of 

sub-keys (round-keys) based on the specified KEA. 

To conceal the correlation between the round input 

and round output, each sub-key is shuffled with the 

round data. Therefore, creating a strong KEA plays a 

crucial role in the advancement of any symmetric 

block cipher system since its effectiveness directly 

impacts the security of the entire block cipher[7]-[9]. 

Therefore, a KEA must generate sub-keys with a high 

degree of randomness and also exhibit robust 

confusion and diffusion characteristics, ensuring that 

all derived sub-keys are independent of one another. 

This guarantees that the compromise of any 

individual sub-key does not disclose any details about 

the secret key or other sub-keys. The entire 

cryptosystem may be compromised if the KEA is 

weak. One of the reasons for the weakness of the 

KEA arises from the linear relationship between the 

generated sub-keys and the master secret key, making 

the cryptosystem potentially vulnerable to 

differential, linear, related-key, statistical, and slide 

attacks [7][10]. A strong and secure KEA enhances 

the entire cipher’s resistance against various assaults, 

including the mentioned attacks and others. 

In the literature, designing a strong and secure 

KEA has received less attention compared to 

encryption techniques[10], [11]. However, 

Harmouch and El Kouch [12] incorporated the 

concept of chaos into the key schedule (expansion) 

algorithm, resulting in the development of a new key 

scheduling method called CKSA, which is based on 

logic maps. This suggested algorithm is a one-way 

function that guarantees effective confusion and 

diffusion, as well as a good avalanche effect. But the 

randomization degree of this method is not 

sufficiently high, according to the NIST test suite. 

Which means that the generated round keys have 

weak randomness and low complexity. Wang et 

al.[13] proposed a key expansion algorithm based on 

the chaotic map and genetic algorithm. Ten out of 

fifteen tests have passed the randomization tests of 

the NIST test suite, while the rest were not explained. 

Poojari and H R[14] proposed a novel method that 

generates random numbers by utilizing the 

scrambling algorithm and Linear Feedback Shift 

Register to produce only five sub-keys for the 

lightweight encryption algorithms, each sub-key with 

a length of 16 bits. Therefore, the key length is not 

sufficient to resist the brute force attack. The 

randomness of the generated sub-keys is tested using 

only the NIST test suite. The extent of the linear 

relationship of the generated sub-keys to the master 

secret key was not measured. Zakaria et al. [15] 

enhance the RECTANGLE key expansion algorithm 

to augment its confusion and randomization 

characteristics in addition to the performance results 

regarding speed and throughput. However, the two 

designs did not pass all of the NIST tests. Garba et al. 

[16] proposed a simple key expansion algorithm. 

Only four tests out of the 15 NIST tests were used to 

evaluate the performance of the algorithm. Some of 

the sub-keys did not pass the poker, serial, and 

frequency tests. Therefore, any sub-key that does not 

pass the frequency test is not considered random, and 

thus the algorithm is unsafe. Alawida et al. [17] 

proposed a new method to generate round keys from 

a given secret key based on finite state machine and 

DNA sequence. This method is not very sensitive to 

single-bit changes because, when the experiment was 

repeated for 64 different secret keys, it was found that 

there are three sub-keys that are exactly similar to the 

secret key, with an average difference equal to zero. 

Xu and Liu [18] use a primitive polynomial over 

GF(2n) and a 2D nondegenerate exponential chaotic 

map to build a key expansion algorithm. The round 

keys are mutually independent, and the algorithm 

successfully satisfies the irreversibility and 

parallelism requirements. The NIST test suite has not 

assessed the randomness of the generated keys, and it 

is also challenging for readers who are unfamiliar 

with the subject to understand this key generation 

method to demonstrate that it is secure.  

In this regard, this scientific paper proposes a 

novel key expansion algorithm based on Dynamic 

Mealy Machine, 3D Logistic Map, and Protein 

Sequence (KE-DMM3DLMPS), which can be used 

for any symmetric block cipher system. The proposed 

KE-DMM3DLMPS algorithm can produce strong 

and secure round keys and overcoming all the 
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problems highlighted in previous studies. The 

following are this study’s contributions and 

novelties: 

• Incorporate the concepts of Mealy Machine, 3D 

Logistic Map, and Protein Sequence to propose 

a novel key expansion algorithm (KE-

DMM3DLMPS), which can be used for any 

symmetric block cipher system. The protein 

sequences are not utilized for the purposes of 

key expansion or data encryption. 

• Proposing a new method for encoding amino 

acids called (Amino Acid Binary Encoding 

Rule) for the purpose of using them later in 

encryption or key expansion operations. 

• The ability to generate a different number of 

round keys with the desired lengths, which 

allows many people interested in cryptography 

to use this algorithm. 

• Generate round keys with a high degree of 

complexity and randomness by passing all of the 

NIST tests. 

• A uniform and ideal distribution of the amino 

acids present in each round key, which ensures 

resistance to statistical analysis attacks. 

• A very high key space of up to 20 × 2471. 

• Breaking the linear relationship between the 

master secret key and the generated round keys. 

• The suggested key expansion method meets the 

following principles: 

o Irreversibility: no sub-key can deduce the 

master secret key.  

o Independence: all generated sub-keys are 

independent of each other. 

o Initial key sensitivity: it is very sensitive to 

the master secret key, satisfying the strict 

avalanche effect (SAC). 

o Confusion: making the relationship 

between the master secret key and the 

round keys as complicated as possible. 

o Diffusion: ensuring that even a slight 

change in the master secret key will have a 

widespread effect on all bits of the round 

key. 

• The suggested technique is capable of 

effectively blocking differential attacks. 

• The proposed KE-DMM3DLMPS algorithm is 

compared with previous studies based on the 

NIST test suite, histogram analysis, and key 

space analysis. We conclude that our proposed 

model outperforms the existing algorithms. 

The subsequent sections of this study are 

structured in the following manner: Section 2 

discusses the context of the suggested scheme. The 

design of the proposed key expansion algorithm is 

Table 1. The genetic code [19] 

 
 

outlined in Section 3. Section 4 explains the 

assessment of experimental results for the suggested 

method. Section 5 focuses on comparing the 

proposed method with some key expansion 

algorithms. Section 6 presents the conclusions of this 

research. 

2. Context of the suggested scheme 

In the following section, we include some 

background material on protein sequence, PAM250 

matrix, 3D Logistic map and the Mealy Machine 

because both of these concepts are important to the 

suggested Key Expansion Scheme. 

2.1 Protein sequence 

Deoxyribose nucleic acid, or DNA, is a very big 

molecule that carries genetic information and 

features that are vital to the survival and development 

of every living organism [19]. DNA is typically made 

up of two long strands that run in opposing directions, 

forming a double helix. Each strand is composed of a 

lengthy chain of subunits. The building blocks of the 

subunits are termed nucleotides, and each nucleotide 

is composed of a phosphate group, a nitrogenous base, 

and either a purine or pyrimidine base. Two types of 

nitrogenous bases are distinguished: the pyrimidine 

bases, Thymine (T) and Cytosine (C), which 

constitute the “genetic code,” and the purine bases, 

Adenine (A) and Guanine (G). Thymine (T) and 

Cytosine (C) are the pairings of Adenine (A) and 

Guanine (G) respectively [19, 20]. The biological 

system of any living organism depends on how these 

four bases are arranged, as this determines the type 

of protein molecule and drives all activity in living 

cells. Furthermore, distinct protein types have varied 

functions [21]. Transcription is the term for the 

complex and protracted process known as central 

dogma that converts DNA to RNA (ribonucleic acid), 

which is thought to be a step in the synthesis of  
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Table 2. PAM250 Matrix[22] (for only 8 amino acids) 

Amino  

Acid 
A R N D C Q E G H I L K M F P S T W Y V 

A 2 -2 0 0 -2 0 0 1 -1 -1 -2 -1 -1 -3 1 1 1 -6 -3 0 

T 1 -1 0 0 -2 -1 0 0 -1 0 -2 0 -1 -3 0 1 3 -5 -3 0 

E 0 -1 1 3 -5 2 4 0 1 -2 -3 0 -2 -5 -1 0 0 -7 -4 -2 

K 
-

1 
3 1 0 -5 1 0 -2 0 -2 -3 5 0 -5 -1 0 0 -3 -4 -2 

I 
-

1 
-2 -2 -2 -2 -2 -2 -3 -2 5 2 -2 2 1 -2 -1 0 -5 -1 4 

V 0 -2 -2 -2 -2 -2 -2 -1 -2 4 2 -2 2 -1 -1 -1 0 -6 -2 4 

N 0 0 2 2 -4 1 1 0 2 -2 -3 1 -2 -3 0 1 0 -4 -2 -2 

P 1 0 0 -1 -3 0 -1 0 0 -2 -3 -1 -2 -5 6 1 0 -6 -5 -1 

 

 

 
Figure. 1 Chaotic behavior of a 1D logistic map for 1000 

iterations 

 
Figure. 2 Chaotic behavior of a 3D logistic map for 1000 

iterations 

 

 

proteins [20]. Translation is the process that converts 

RNA into the amino acids that make up a protein 

molecule. Codons are groups of three consecutive 

nucleotides that are extracted from RNA during 

translation. Each codon represents an amino acid, and 

the arrangement of these amino acids determines the 

structure and function of the resulting protein [19], 

[21-23]. Most of the twenty amino acids that can be 

produced from distinct codons can be produced from 

several codons, as Table 1 illustrates. Three STOP 

codons serve as additional markers for the protein 

sequence’s end in addition to amino acids [24]. 

2.2 PAM250 scoring matrix 

The PAM250 matrix, also known as the Point 

Accepted Mutation Version 250 matrix [22], is 

derived by iteratively multiplying the PAM1 matrix 

with itself for a total of 250 iterations. This matrix is 

widely employed in BLAST searches of databases. It 

is a widely employed tool in the field of 

bioinformatics, specifically for the purpose of 

matching amino acid sequences. Its primary function 

is to assign a numerical score to each alignment, 

facilitating the comparison and evaluation of 

different alignments. The intersection of amino acids 

inside the matrix corresponds to a distinct score that 

quantifies the degree of their potential interactions 

with other amino acids in the matrix, as explained in 

Table 2. 

2.3 Chaotic map 

Chaos maps are currently used in the area of 

encryption due to their benefits and ability to improve 

encryption system security[25]. They are dynamical 

systems that lack linearity and are highly sensitive to 

the initial conditions, which display random behavior 

in response to those initial conditions. These 

conditions include the values allocated to the system 

parameters, as explained below [26]. Different kinds 

of chaotic maps have been used by researchers, but 
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the one-dimensional (1D) logistic map is probably 

the most simple and well-known map and is defined 

in Eq. (1) [27, 28], as follows: 

 

𝑥𝑛+1 =  𝜆𝑥𝑛(1 − 𝑥𝑛)    (1) 

 

Here, 𝑥𝑛 is the state variable (0 <  𝑥𝑛 < 1 ), 𝜆 is 

the system parameter (0 <  𝜆 < 4 ), and 𝑛  is the 

number of iterations needed to iteratively produce the 

state values. It was proved that the sequences 

generated in a 1D logistic map and at 3.56994 <  𝜆 ≤
4 lead towards chaotic behavior [29] , as shown in 

Fig. 1. 

A 1D chaotic map can be expanded into a three-

dimensional (3D) chaotic map, which offers a high 

level of unpredictability and thus more security, as 

explained in Eqs. (2)-(4) [30]. 

 

𝑥𝑖+1 =  𝛼𝑥𝑖(1 − 𝑥𝑖) + 𝛽𝑦𝑖
2𝑥𝑖 + 𝜎𝑧𝑖

3   (2) 

 

𝑦𝑖+1 =  𝛼𝑦𝑖(1 − 𝑦𝑖) + 𝛽𝑧𝑖
2𝑦𝑖 + 𝜎𝑥𝑖

3   (3) 

 

𝑧𝑖+1 =  𝛼𝑧𝑖(1 − 𝑧𝑖) + 𝛽𝑥𝑖
2𝑧𝑖 + 𝜎𝑦𝑖

3   (4) 

 

Chaotic behavior is exhibited when the values of 

the parameters 𝛼, 𝛽, and 𝜎 fall within the specified 

ranges of 3.53 < 𝛼 < 3.81, 0 < 𝛽 < 0.022, and 0 < 𝜎 < 

0.015, respectively. Additionally, the variables 𝑥0 , 

𝑦0, and 𝑧0 are constrained to the interval [0, 1].  

Fig. 2 illustrates the full chaotic nature and dynamical 

behavior of the three-dimensional logistic map, 

which exhibits a higher degree of randomness 

compared to its one-dimensional counterpart and can 

be effectively employed as a pseudo-random number 

generator in building the private secret tables for a 

mealy machine. 

2.4 Mealy machine (MM) 

In computation theory, the Mealy machine is 

defined as a finite-state machine [31]; MM can be 

used in a cryptographic field to achieve a more secure 

system [32]-[35], where its output depends on the 

present state and the present input of the machine [35]. 

It is defined by six tuples, i.e., M = (Q, I, O, δ, Ω, q0). 

Such that: 

• Q represents a collection of non-empty, finite 

states. 

• I and O represent a collection of finite input 

and output alphabets, respectively. 

• q0 represents the initial state, where q0 ∈ Q. 

 
Figure. 3 Design of MM with two states 

 

 
Table 3. Mealy machine state table 

Input transition function δ: Q × I → Q 

Present 

State 

Input = 0 Input = 1 

Next State Next State 

X x y  

Y y x  

 

 
Table 4. Mealy machine output table 

Output transition function Ω: Q × I → O 

Present 

State 

Input = 0 Input = 1 

Output Output 

x 1 0 

y 0 1 

 

• δ represents the input transition function, such 

that δ: Q × I → Q. 

• Ω represents the output transition function, 

such that Ω: Q × I → O. 

An example of Mealy machine is as follows: 

− Q = {x, y} 

− I = {0, 1} 

− O= {0, 1} 

− q0 = x  

As depicted in Fig. 3 as a transition diagram, the 

Mealy machine in this example consists of two states 

(‘x’ and ‘y’), where ‘x’ is the initial state. The binary 

bits 0 and 1 are considered input and output alphabets. 

The Mealy machine in this example is used to convert 

any binary string into another binary string. 

The design of the Mealy machine is based on the 

state and output tables, as shown in Tables 3 and 4. 

Assume the binary string 1011101 is the Mealy 

machine’s input. The machine starts from the initial 

state ‘x’ and reads the first input symbol ‘1’; therefore, 

the output string is ‘0’, and it moves to state ‘y’. Then 

the next binary sting read is ‘0’, so the output 

machine is ‘0’, and the machine stays in the state ‘y’. 

This procedure is iterated until all the input binary 

strings have been used. Finally, the Mealy machine 

input string ‘1011101’ becomes ‘0010110’. 

3. Proposed key expansion algorithm design 

This section discusses the materials and methods 

used to design a novel, robust, and secure key 
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Table 5. Amino acid binary encoding rule 

Amino 

 Acid 

Three 

letters 

 Code 

One 

letter  

code 

4 bits 

 Binary 

code 

Cysteine Cys C 0000 

Aspartic Acid Asp D 0001 

Phenylalanine Phe F 0010 

Alanine Ala A 
0011 

Threonine Thr T 

Glycine Gly G 0100 

Glutamic Acid Glu E 
0101 

Lysine Lys K 

Histidine His H 0110 

Leucine Leu L 0111 

Methionine Met M 1000 

Glutamine Gln Q 1001 

Isoleucine Ile I 
1010 

Valine Val V 

Arginine Arg R 1011 

Asparagine Asn N 
1100 

Proline Pro P 

Serine Ser S 1101 

Tryptophan Trp W 1110 

Tyrosine Tyr Y 1111 

 

expansion method that has the ability to create sub-

keys independent of each other, has high randomness, 

a large key space, and some other good security 

properties that enable it to be widely used in any 

symmetric block cryptosystem. The proposed Key 

Expansion algorithm is based on Dynamic Mealy 

Machine, 3D Logistic Map, and Protein Sequence 

(KE-DMM3DLMPS). Below is a detailed 

explanation of the design of the proposed key 

expansion method. 

3.1 Conversion secret key to amino acid-bases 

In computing domains like data encryption and 

key generation, DNA ideas are commonly used. This 

is because it is simple to translate each of the two 

binary numbers (00, 10, 01, 11) into one of the four 

nucleotides (A, C, G, and T). However, our 

investigation revealed that no one has ever used a 

protein sequence to expand the keys or encrypt data. 

The twenty amino acids can be represented using five 

bits [36]. We proposed to take the four most 

significant bits to represent 20 amino acids. Therefore, 

four amino acids will have the same binary 

numbering when represented by four bits. According 

to Table 2 in subsection 2.2, we conclude that the 

score of the amino acid Alanine (A) is similar to the 

score of the amino acid Threonine (T) in eleven 

positions, the score of the amino acid Glutamic Acid 

(E) is similar to the score of the amino acid Lysine 

(K) in ten positions, the score of the amino acid 

Isoleucine (I) is similar to the score of the amino acid 

Valine (V) in thirteen positions, and the score of the 

amino acid Asparagine (N) is similar to the score of 

the amino acid Proline (P) in seven positions when 

each of them interacts with all amino acids. So, we 

will combine those amino acids that have a high 

degree of similarity. 

In Table 5, we proposed the Amino Acid Binary 

Encoding Rule (AABER) for 20 amino acids to 

facilitate the processes taking place on the protein, 

such as Amino Acid exclusive-OR (AA-XOR), 

which can be used during the suggested key 

expansion algorithm. Assume ‘2f34e9a3’ is the secret 

key that must be changed into amino acid bases. First, 

this secret key must be converted to binary form. 

Next, the binary value of the secret key ‘0010 1111 

0011 0100 1110 1001 1010 0011’ must be pre-

processed to count the repeated number of binary 

codes for the merged amino acids. If the number of 

binary codes for the merged amino acids is greater 

than one, then those amino acids are distributed 

equally among those binary codes in order to give 

equal shares to each of those amino acids. In this 

example, the number of binary codes (0011) for the 

merged amino acids (A and T) is two (Count_AT=2). 

After the pre-processing step, each of the 4 bits must 

be converted to an amino acid, according to Table 5, 

taking into account the number of merged amino 

acids. So, the binary secret key for this example 

becomes as follows: FYAGWQIT. 

3.2 Proposed protein operations 

The twenty amino acids of a protein sequence can 

be represented using four bits, as we proposed in 

Section 3.1. There are in total 16! 

(20,922,789,888,000) different ways to map these 

four bits to the amino acids (also called amino acid 

binary encoding rules); therefore, it is very difficult 

for an attacker to guess the correct binary coding rule 

for amino acids. For example, Table 5 is one of the 

amino acid binary encoding rules out of 16!. 

 Besides these amino acids binary encoding rules, 

various protein operations can be carried out on these 

twenty amino acids, such as Amino Acid (AA) 

addition, AA subtraction, AA-XOR, and AA 

complementary operation. The process of key 

expansion holds significant importance in encryption 

systems, with XOR playing a pivotal role in 

augmenting both the speed and security of this 

process. So, we will use the AA-XOR operation in 

this research. 
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In order to apply the AA-XOR operation to amino 

acids, the amino acids are first converted to the binary 

sequence according to the rule in Table 5, and then 

the usual XOR operations are performed (i.e., 0 xor 1 

= 1, 1 xor 1 = 0). Next, we pre-process the binary 

sequence to count the number of repeated binary 

codes for the merged amino acids. If the number of 

binary codes for the merged amino acids is greater 

than one, then those amino acids are distributed 

equally among those binary codes in order to give 

equal shares to each of those amino acids. Finally, we 

convert the binary sequence into an amino acid 

sequence using the rule specified in Table 5. For 

instance, if the two protein sequences are “CHAA” 

and “RDYY”, then the XOR operation of those two 

sequences is “RLNP”. 

3.3 3D logistic map sequence generation 

We can use the Chaos map system that was 

previously explained in sub-section 2.3 to generate 

the pseudorandom sequence, which can be exploited 

as a secret key to build the mealy machine transition 

tables. There is a need to use chaotic systems in the 

cryptographic field because they naturally have 

nonlinearity and random behavior, which makes it 

possible to create pseudorandom sequences. The 

subsequent procedure delineates the process of 

sequence generation: 

Step 1: Initial Values Generation 

The initial values of 𝑥0, 𝑦0, and 𝑧0 in Eqs. (2)-(4) 

are obtained from a 256-bit master key 𝑀𝐾, as shown 

by the proposed Eqs. (5)-(7), where 𝑀𝐾 =
{𝐾1, 𝐾2, … , 𝐾32} , and each 𝐾  represents an 8-bit 

binary number. 

 

𝑋0 = 𝑚𝑜𝑑( 𝐾1 ⊕ 𝐾2  ⊕ … ⊕ 𝐾10 + ∑ 𝐾𝑖
32
𝑖=1 /

 212 , 1)       (5) 

 

𝑌0 =  𝑚𝑜𝑑 ( 𝐾11 ⊕ 𝐾12  ⊕ … ⊕ 𝐾21 +
 ∑ 𝐾2𝑖+1

15
𝑖=0 / 212 , 1)     (6) 

 

𝑍0 =  𝑚𝑜𝑑 ( 𝐾22 ⊕ 𝐾23  ⊕ … ⊕ 𝐾32 +  ∑ 𝐾2𝑖
16
𝑖=1 /

 212  , 1 )      (7) 

 

where the symbol ⨁ denotes the exclusive OR 

(XOR) operator. According to Eqs. (5)-(7), the initial 

values of 𝑋0, 𝑌0, and 𝑍0 will be set within the interval 

[0, 1]. For example, if the master key is: 

𝑀𝐾 =‘895389AD00493BFEDF5A293B1E876B25C

6127E1C26C0FBE228F57CB0D7476053’, then 𝑋0, 

𝑌0 , and 𝑍0  are equal to (0.97949, 0.46558, and 

0.50049), respectively.  

Step 2: 3D Logistic Map Sequence Generation 

Firstly, iterate the Eqs. (2)-(4) for 𝑛 times, using 

the initial values (𝑋0, 𝑌0, and 𝑍0) that were obtained 

from step 1 and with (𝛼 = 3.80, 𝛽 = 0.021, and 𝜎 = 

0.013). For each iteration, we can obtain three 

decimal sequences (𝑋𝑖, 𝑌𝑖, and 𝑍𝑖) that lie between 0 

and 1. 
Secondly, convert the second and third sequences 

( 𝑌𝑖  and 𝑍𝑖 ) of the 3D Logistic Map into integer 

sequences (𝐼𝑌𝑖 and 𝐼𝑍𝑖)between 1 and 20 in order to 

use them in building state and output tables, as shown 

in the proposed Eqs. (8) and (9): 

 

𝐼𝑌𝑖 = 𝑚𝑜𝑑 (⌊ ((𝑌𝑖 + 100) ×  1010) ⌋,20) + 1  (8) 

 

𝐼𝑍𝑖 = 𝑚𝑜𝑑 (⌊ ((𝑍𝑖 + 100) × 1010)⌋,20) + 1 (9) 

 

where ⌊x⌋ = maximum {a ∈ Z; x ≥ a}. 

Thirdly, after applying Eqs. (8) and (9), all the 

decimal sequences (𝑌𝑖  and 𝑍𝑖 )  of the 3D Logistic 

Map will be converted to integer sequences (𝐼𝑌𝑖 and 

𝐼𝑍𝑖), but duplicate values will appear. To obtain the 

desired randomness, all repeated values are removed 

and replaced with the remaining values within the 

period from 1 to 20. 

3.4 Design a dynamic mealy machine based on a 

3D logistic map and protein sequences 

(DMM3DLMPS) 

The main objective of this sub-section is to 

allocate values to the six tuples of the proposed mealy 

machine. Since the input and the output of the mealy 

machine are protein sequences, the tuples I and O are 

sets of amino acid bases. Given that there are twenty 

distinct amino acid bases and each state produces a 

certain amino acid base, the machine is characterized 

by twenty states, namely 1, 2, 3 ,4 ,5 ,6 ,7 ,8 9, 10, 11, 

12, 13, 14, 15, 16, 17, 18, 19, and 20, where any state 

of those twenty states can be assigned to the initial 

state. The input transition function (δ: Q × I → Q) 

and the output transition function (Ω: Q × I → O) are 

generated randomly based on the 3D logistic map, 

and the results are stored in the state table and the 

output table, respectively. Therefore, the values that 

were assigned to the six tuples can be summarized as 

follows: 

• Q = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9, 10, 11, 12, 13, 14, 

15, 16, 17, 18, 19,20} 

• I = {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, 

S, T, V, W, Y} 

• O= {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, 

R, S, T, V, W, Y} 

• δ = Randomly generated 

• Ω = Randomly generated 
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Table 6. A section of a generated mealy machine state table 

Input transition function δ: Q × I → Q 

P
re

se
n

t 

S
ta

te
 Input 

A C D E F G H I K L M N P Q R S T V W Y 

Next State 

1 20 12 11 2 14 15 6 18 5 19 4 13 8 3 7 16 9 10 17 1 

2 1 20 12 11 2 14 15 6 18 5 19 4 13 8 3 7 16 9 10 17 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

19 19 4 13 8 3 7 16 9 10 17 1 20 12 11 2 14 15 6 18 5 

20 9 10 17 1 20 12 11 2 14 15 6 18 5 19 4 13 8 3 7 16 

 

 
Table 7. A Section of a generated mealy machine output table 

Output transition function Ω: Q × I → O 

P
re

se
n

t 

S
ta

te
 Input 

D E A C F G H I L Y M K N Q R S P T W V 

Output 

1 Y L K N D M Q W T G I S A H V C P E R F 

2 I S A H V C P E R F Y L K N D M Q W T G 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

19 C P E R F Y L K N D M Q W T G I S A H V 

20 M Q W T G I S A H V C P E R F Y L K N D 

 

 

• q0 = Assigned by the user (q0 = x | x ∈ 𝑄 ) 

The design of the DMM3DLMPS is primarily 

expressed by means of two transition tables, which 

are referred to as the secret state table (SST) and the 

secret output table (SOT). The SST store the input 

transition function δ: Q × I → Q as shown in Table 6 

and the SOT store the output transition function Ω: Q 

× I → O as shown in Table 7. The values of the ‘next 

states’ in Table 6 are allocated at random from the set 

{1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9, 10, 11, 12, 13, 14, 15, 16, 17, 

18, 19,20} based on the decimal numbers generated 

from the second dimension of the 3D logistic map 

(𝐼𝑌𝑛) and left shift as explained in Algorithm 1. The 

values of the ‘Output’ in Table 7 are allocated at 

random from the set {A, C, D, E, F, G, H, I, K, L, M, 

N, P, Q, R, S, T, V, W, Y} based on the decimal 

numbers generated from the third dimension of the 

3D logistic map (𝐼𝑍𝑛) and left shift as explained in 

Algorithm 2. 

 

Algorithm 1. Proposed Secret State Table 

Generation Algorithm 

Input: 𝑰𝒀𝒏  // The second dimension of the 3D 

logistic map  

Output: 𝑺𝑺𝑻 // 𝑺𝑺𝑻 is a 20 × 20 double matrix 

Step1. 𝑺𝑺𝑻 = zeros (20) // Initialize a 20 × 20 empty 

matrix 

Step2. Performing a left shift rotation and filling the 

𝑆𝑆𝑇 matrix: 

 for k from 1 to 20 do 

    𝑹𝑬 = 𝑳𝒆𝒇𝒕𝑺𝒉𝒊𝒇𝒕 (𝑰𝒀𝒏 , − (𝑰𝒀𝒏 [k])) 

      𝑺𝑺𝑻 [k , :] = 𝑹𝑬 

 end k 

 

For example, if 𝑰𝒀𝒏  = 

[1,20,12,11,2,14,15,6,18,5,19,4,13,8,3,7,16,9,10,17], 

then a fragment of SST is presented in Table 6. 

 

Algorithm 2. Proposed Secret Output Table 

Generation Algorithm 

Input: The third dimension of the 3D logistic map 

(𝑰𝒁𝒏), amino acids symbols (𝑨𝑨𝑺) 

Output: 𝑺𝑶𝑻 // 𝑺𝑶𝑻 is a 20 × 20 cell matrix 

Step1. 𝑺𝒉𝑨𝑨  = 𝑨𝑨𝑺 (𝑰𝒁𝒏 ( 𝟏 ∶ 𝟐𝟎)) // Shuffling of 

(𝑨𝑨𝑺) based on the third dimension of the 3D logistic 

map 

Step2. 𝑺𝑶𝑻 = cell (20, 20) // Initialize a 20 × 20 

empty matrix 

Step3. Performing a left shift rotation and filling the 

SOT matrix: 

 for j from 1 to 20 do 

    𝑹𝑽 = 𝑳𝒆𝒇𝒕𝑺𝒉𝒊𝒇𝒕 (𝑺𝒉𝑨𝑨 , − (𝑰𝒁𝒏 [j]))  

     𝑺𝑶𝑻 [j , :] = 𝑹𝑽 

 end j  
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For example, if 𝑰𝒁𝒏  = 

[20,10,9,12,3,11,14,19,17,6,8,16,1,7,18,2,13,4,15,5] 

and AAS = {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, 

R, S, T, V, W, Y}, then a section of SOT is presented 

in Table 7. 

3.5 Generating of round keys  

In the proposed KE-DMM3DLMPS algorithm, 

we create a mealy machine that consists of 20 states. 

Each state has 20 bidirectional transitions, which are 

linked to other states and the state itself, and these 

transitions are symbols for the amino acids of the 

protein, as discussed in Section 3.4. The transitions 

between these states are controlled by the secret key. 

Before starting the key expansion process, as shown 

in Algorithm 3, the proposed algorithm distributes a 

copy of the master secret key (MSK) to all 20 states, 

such that each state holds a copy of MSK, as shown 

in Step 1. The master secret key is in the form of a 

protein sequence, as explained in Section 3.1. Each 

state, in turn, subsequently carries out two logical 

processes on its secret key, namely: AA-XOR and 

amino acid-left shift rotation (AA-LSR), and these 

two logical processes depend on the addresses of the 

twenty amino acids (A, C, D, E, F, G, H, I, K, L, M, 

N, P, Q, R, S, T, V, W, Y). In Step 2, the user must 

select the starting state (𝐴𝑐𝑡𝑣𝑠𝑡 ) from which they 

wish to start. After that, the algorithm picks up the 

first amino acid from the secret key found in the 

starting state (𝐴𝑐𝑡𝑣𝑎𝑎), as explained in step 3. In step 

4, the proposed key expansion algorithm starts by 

performing an AA-XOR process between the 𝐴𝑐𝑡𝑣𝑎𝑎 

and all the amino acids found in the key of this state 

( 𝑆𝐾𝑠𝑡 { 𝐴𝑐𝑡𝑣𝑠𝑡 }). After completing the AA-XOR 

process, we apply the AA-LSR process to all the 

bases in that key to eliminate any possible 

redundancy between the round keys. For each amino 

acid base, there is a fixed number. For A, C, D, E, F, 

G, H, I, K, L, M, N, P, Q, R, S, T, V, W, and Y, the 

fixed numbers are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

13, 14, 15, 16, 17, 18, 19, and 20, respectively. The 

number of left-shift rotations is determined by 

multiplying the fixed number with the state number. 

The updated secret key, which is the result of the AA-

LSR process, becomes the secret key in this state and 

serves as the first-round key, controlling the KE-

DMM3DLMPS, as demonstrated in the example 

below.   

For the second-round key, the KE-

DMM3DLMPS algorithm examines the second 

amino acid in the updated secret key in the starting 

state, known as the 𝑁𝑥𝑡𝑎𝑎, to determine the new state 

to move to. The mealy machine (𝑀𝑀) takes the 𝑆𝑆𝑇, 

𝑆𝑂𝑇,  𝑁𝑥𝑡𝑎𝑎, and the 𝐴𝑐𝑡𝑣𝑠𝑡  as input to determine 

the output of the second amino acid (𝑂𝑎𝑎) and the 

new state (𝑁𝑠𝑡). The KE-DMM3DLMPS algorithm 

then does an AA-XOR operation on the output of the 

second amino acid and all the amino acids of the key 

in the new state. After completing the AA-XOR 

process, the proposed algorithm applies the AA-LSR 

process to all the bases of the XORing key. The 

updated secret key, which is the result of the AA-LSR 

process, becomes the secret key in this state and 

serves as the second-round key. The proposed 

algorithm will continue with this procedure based on 

the size of the entered secret key, such that in each 

state there are N protein base updates. The number of 

rounds is calculated according to Eq. (10) because 

each base needs 4 bits to be represented in binary. 

 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑜𝑢𝑛𝑑𝑠 = 𝑘𝑒𝑦 𝑙𝑒𝑛𝑔𝑡ℎ 𝑖𝑛 𝑏𝑖𝑡

4
             (10) 

 

For example, if the size of the secret key is 256 bits, 

then the KE-DMM3DLMPS algorithm iterates 64 

times to generate 64 different round keys, each of 

them with a length of 256 bits, and this is considered 

to be one of the main advantages of our proposed 

algorithm. 

 

Algorithm 3. Proposed KE-DMM3DLMPS 

Algorithm 

Input: Master Secret Key (𝑴𝑺𝑲), 𝑺𝑺𝑻, 𝑺𝑶𝑻, and  

𝑨𝑨𝑩𝑬𝑹 

Output: 𝐾𝐴  // Keys Array, which stores multiple 

round keys 

Step1. 𝑆𝐾𝑠𝑡 = 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑘𝑒𝑦𝑠 (𝑴𝑺𝑲)  

Step2. 𝐴𝑐𝑡𝑣𝑠𝑡 = 𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑠𝑡𝑎𝑡𝑒   

Step3. 𝐴𝑐𝑡𝑣𝑎𝑎 = 𝑆𝐾𝑠𝑡{𝐴𝑐𝑡𝑣𝑠𝑡} (1)   

Step4. 

for 𝑖𝑟𝑜𝑢𝑛𝑑𝑠 from 1 to length (𝑴𝑺𝑲) do 

 𝑿𝒌 =  𝐴𝑚𝑖𝑛𝑜_𝐴𝑐𝑖𝑑𝑋𝑂𝑅𝑖𝑛𝑔 (𝐴𝑐𝑡𝑣𝑎𝑎 , 𝑆𝐾𝑠𝑡{𝐴𝑐𝑡𝑣𝑠𝑡}) 

  𝑹𝒌 = 𝐴𝑚𝑖𝑛𝑜_𝐴𝑐𝑖𝑑𝐿𝑆𝑅 (𝑋𝑘  , 𝐴𝑐𝑡𝑣𝑠𝑡) 

    𝑺𝑲𝒔𝒕{𝐴𝑐𝑡𝑣𝑠𝑡} = 𝑅𝑘 // Update the secret key 

       𝑲𝑨 {𝑖𝑟𝑜𝑢𝑛𝑑𝑠 } = 𝑆𝐾𝑠𝑡{𝐴𝑐𝑡𝑣𝑠𝑡}// Store the keys  

 If (𝑖𝑟𝑜𝑢𝑛𝑑𝑠 + 1) <= length (𝑀𝑆𝐾) 

   𝑁𝑥𝑡𝑎𝑎 = 𝑆𝐾𝑠𝑡{𝐴𝑐𝑡𝑣𝑠𝑡} (𝑖𝑟𝑜𝑢𝑛𝑑𝑠 + 1) 

     [𝑂𝑎𝑎  , 𝑁𝑠𝑡] =   𝑀𝑀 (𝑆𝑆𝑇, 𝑆𝑂𝑇, 𝑁𝑥𝑡𝑎𝑎  , 𝐴𝑐𝑡𝑣𝑠𝑡)  

       𝐴𝑐𝑡𝑣𝑎𝑎 = 𝑂𝑎𝑎 

         𝐴𝑐𝑡𝑣𝑠𝑡  = 𝑁𝑠𝑡 

 else 

         break   

 end if  

end 𝑖𝑟𝑜𝑢𝑛𝑑𝑠 

 

To illustrate the process of key expansion step by 

step, we will take the following example: Given the 

master secret key (MSK), SST, SOT, and AABER as 

Table 5. 
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• MSK = ‘KRMATY’ (24 bits) 

• SST, and SOT: the same in Table 6 and 7, 

respectively  

Step 1: States 1 to 20 have a copy of the secret key: 

MSK = ‘KRMATY’. 

Step 2: 𝐴𝑐𝑡𝑣𝑠𝑡 = 8. 

Step 3: 𝐴𝑐𝑡𝑣𝑎𝑎 = ‘K’. 

Step 4: 

Round 1: 

• 𝑋𝑘  = (‘KKKKKK’ XOR ‘KRMATY’) = 

‘CWSHHI’ 

• 𝑅𝑘  = ‘HICWSH’  

• 𝑆𝐾𝑠𝑡{8} = ‘HICWSH’ // Update the secret key 

• 𝐾𝐴  {1} = ‘HICWSH’ // Store the key in the 

array 

• 𝑁𝑥𝑡𝑎𝑎  = ‘ I ‘ 

• [‘Q’, 8] = MM (SST, SOT, ‘I’, 8) 

• 𝐴𝑐𝑡𝑣𝑎𝑎 = ‘Q’ 

• 𝐴𝑐𝑡𝑣𝑠𝑡  = 8 

Round 2: 

• 𝑋𝑘  = (‘QQQQQQ’ XOR ‘HICWSH’) = 

‘YAQLGY’ 

• 𝑅𝑘   = ‘GYYAQL’ 

• 𝑆𝐾𝑠𝑡{8} = ‘GYYAQL’ 

• 𝐾𝐴 {2} = ‘GYYAQL’ 

• 𝑁𝑥𝑡𝑎𝑎  = ‘Y’ 

• [‘T’,14] = MM (SST, SOT, ‘Y’, 8) 

• 𝐴𝑐𝑡𝑣𝑎𝑎 = ‘T’ 

• 𝐴𝑐𝑡𝑣𝑠𝑡  = 14 

Round 3: 

• 𝑋𝑘  = (‘TTTTTT’ XOR ‘KRMATY’) = 

‘HMRCCN’ 

• 𝑅𝑘   = ‘RCCNHM’ 

• 𝑆𝐾𝑠𝑡  {14} = ‘RCCNHM’ 

• 𝐾𝐴 {3} = ‘RCCNHM’ 

• 𝑁𝑥𝑡𝑎𝑎  = ‘N’ 

• [‘F’,17] = MM (SST, SOT, ‘N’, 14) 

• 𝐴𝑐𝑡𝑣𝑎𝑎 = ‘F’ 

• 𝐴𝑐𝑡𝑣𝑠𝑡  = 17 

Round 4: 

• 𝑋𝑘  = (‘FFFFFF’ XOR ‘KRMATY’) = 

‘LQIDDS’ 

• 𝑅𝑘   = ‘LQIDDS’ 

• 𝑆𝐾𝑠𝑡{17} = ‘LQIDDS’ 

• 𝐾𝐴 {4} = ‘LQIDDS’ 

• 𝑁𝑥𝑡𝑎𝑎  = ‘D’ 

• [‘H’,10] = MM (SST, SOT, ‘D’, 17) 

• 𝐴𝑐𝑡𝑣𝑎𝑎 = ‘H’ 

• 𝐴𝑐𝑡𝑣𝑠𝑡  = 10 

Round 5: 

• 𝑋𝑘  = (‘HHHHHH’ XOR ‘KRMATY’) = 

‘ASWEKQ’ 

• 𝑅𝑘  = ‘ASWEKQ’ 

• 𝑆𝐾𝑠𝑡  {10} =‘ASWEKQ’ 

• 𝐾𝐴 {5} = ‘ASWEKQ’ 

• 𝑁𝑥𝑡𝑎𝑎  = ‘Q’ 

• [‘F’, 10] = MM (SST, SOT, ‘Q’, 10) 

• 𝐴𝑐𝑡𝑣𝑎𝑎 = ‘F’ 

• 𝐴𝑐𝑡𝑣𝑠𝑡  = 10 

Round 6: 

• 𝑋𝑘  = (‘FFFFFF’ XOR ‘ ASWEKQ’) = 

‘DYNLLR’ 

• 𝑅𝑘  = ‘NLLRDY’ 

• 𝑆𝐾𝑠𝑡  {10} = ‘NLLRDY’ 

• 𝐾𝐴 {6} = ‘NLLRDY’ 

 

Therefore, the six round keys that are generated 

from the proposed key expansion algorithm are: 𝐾𝐴 

= {‘HICWSH’, ‘GYYAQL’, ‘RCCNHM’, 

‘LQIDDS’, ‘ASWEKQ’, ‘NLLRDY’}. The larger 

the master secret key, the more round keys there are, 

and the greater the complexity between those round 

keys. 

4. Assessment of experimental results for the 

suggested method 

The suggested KE-DMM3DLMPS algorithm is 

tested in this section using Flexibility, the NIST 

Statistical Test Suite, Histogram Analysis, Key Space 

Analysis, Correlation Coefficient, Hamming 

Distance, Number of Bit Change Rate, Initial Key 

Sensitivity, Confusion and Diffusion, and 

Differential Attack. The aim of this test is to 

demonstrate the strength and security of the proposed 

key expansion algorithm. 

4.1 Flexibility 

The proposed KE-DMM3DLMPS algorithm is 

highly flexible: (1) it can produce keys of different 

lengths that are divisible by 8, such as 8, 16, 24, ..., 

128, 136, ..., 1024 bits, or longer as desired by the 

user. (2) According to point (1), it can generate a 

different number of round keys by specifying the 

input size for the master secret key as described in 

Table 8. The user can also specify the number of sub-

keys he needs for encryption. 

4.2 NIST SP 800-22 test suite 

The National Institute of Standards and 

Technology [37] proposed the NIST SP 800-22 test 

suite as a standard test to measure the randomness of 

key expansion algorithms and any cryptographic 

system associated with random numbers. It consists 

of several tests to discover the different properties of  
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Table 8. The relationship between the key 

size and the number of rounds 
Key Length Number of rounds 

64-bit 16 

128-bit 32 

256-bit 64 

512-bit 128 

1024-bit 256 

 

 
Table 9. NIST test suite results of the proposed 

KE-DMM3DLMPS algorithm 

Statistical Test P-value Result 

Frequency  0.875291 Pass  

Block Frequency 0.654822 Pass  

Cumulative Sums 0.804396 Pass  

Runs  0.447751 Pass  

Longest Runs of Ones 0.571849 Pass  

Rank 0.436898 Pass  

Spectral DFT 0.483807 Pass  

Non-Overlapping Templates 0.460300 Pass  

Overlapping Templates 0.999988 Pass  

Universal 0.996711 Pass  

Approximate Entropy 0.753984 Pass  

Random Excursions 0.341179 Pass  

Random Excursions Variant 0.675457 Pass  

Serial 0.595208 Pass  

Linear Complexity 0.861094 Pass  

 

 

random sequences. Some of the NIST test suite 

should be applied to sequences of length greater than 

or equal to one million bits. For small sequences, the 

NIST test suite gives misleading results. In order to 

obtain enough bits to perform all the NIST test suite 

properly, a master secret key with a length of 256 bits 

(64 amino acids) is used, and then the proposed KE-

DMM3DLMPS algorithm is repeated 150 times to 

generate 9601 rounds with a total length of 2457856 

bits. 

The obtained round keys must be converted into 

binary form using Table 5, and these binary 

sequences are considered input to the NIST test suite, 

which consists of 15 tests. Each test has a p-value that 

compares with a fixed level of significance (𝜎), 

where the value of the 𝜎 is to be at least 0.01. If the 

p-value obtained from each test is greater than 𝜎, then 

the test is successful; otherwise, the test is a failure. 

That is, the p-value reflects the result of the test. A 

larger p-value indicates a higher level of randomness 

in the tested sequence. Based on the results obtained 

and shown in  Table  9 ,  the  proposed KE - 

 
Figure. 4 Histogram of Amino Acid for 160 Bits 

 

 

DMM3DLMPS algorithm passed all tests 

successfully with no obvious statistical defects. 

Which means that the generated round keys are very 

random and complex. 

4.3 Histogram analysis (Statistical attacks) 

The histogram is a graphical representation that 

illustrates the frequency distribution of the amino 

acids for several round keys in the propoesd 

algorithm. The uniform distribution of amino acids 

for several round keys makes the algorithm resistant 

to statistical attacks, making it very difficult for an 

attacker to know any information about the secret key. 

The high frequency of some amino acids leads to the 

disclosure of information. So, as a good proposed key 

expansion system, the histogram of amino acids 

should be evenly distributed. In this study, a 

histogram of the round keys is displayed by counting 

the number of each amino acid (count 𝑎𝑎), where the 

optimal value for each amino acid is calculated as 

shown in Eq. (11). 

 

𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑣𝑎𝑙𝑢𝑒 = 𝐿𝑆𝐾  ×  
𝑁𝑜.𝑅𝑜𝑢𝑛𝑑𝑠

20
             (11) 

 

Where 𝐿𝑆𝐾 is the number of amino acids in the 

secret key and 𝑁𝑜.𝑅𝑜𝑢𝑛𝑑𝑠 is the number of generated 

rounds. 

We take a master secret key with a length of 160 

bits (i.e., 40 amino acids), as follows: key  = 

‘TGQWISAHVCTYEGRYLKNDMEHRNCFVPK

AFMLPIDQWS’. The optimal value for this key 

should be 80 to ensure a uniform distribution of 

amino acids for 40 rounds. Fig. 4 displays a 

histogram of the amino acids in the above-mentioned 

secret key for 40 rounds; therefore, we conclude from 

this figure that each amino acid has an average 

count 𝑎𝑎 equal to 80, which indicates that the amino 

acids of the round keys are completely evenly  
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Figure. 5 Correlation coefficient for 128 round keys (256-

bits secret key) 

 

 

distributed, and therefore the proposed KE-

DMM3DLMPS algorithm is efficiently resistant to 

statistical analysis attacks.  

4.4 Key space analysis 

From the cryptanalysis point of view, the key 

space should be greater than 2100 in order to render 

brute-force attacks futile [27]. The key space of the 

suggested KE-DMM3DLMPS algorithm includes: 

(1) the initial values of the state variables (𝑥0, 𝑦0, and 

𝑧0) and the control parameters (𝛼, 𝛽, and 𝜎) of the 3D 

logistic map that is used to generate the output and 

the state tables. When the computer’s precision is 

about 10−15, then the key space of the initial values 

is  (1015)6 =  1090  ≈  2299 . (2)  the amino acid 

binary encoding rules, where there are, in total, 16! ≈
244 different rule to map the four bits to the amino 

acids. (3) the master secret key, which is considered 

an input to the Mealy machine, is in the form of a 

protein sequence and of different sizes according to 

the user’s desire. Assuming that the length of the 

master secret key is 128 bits, the key space of the 

master secret key is 2128. (4) the starting state of the 

mealy machine, because there are 20 states, so the 

key space is 20. Thus, the proposed key expansion 

method has a key space of a total of 20 × 2471 , 

indicating a significant level of security against brute 

force assaults. 

4.5 Correlation coefficient assessment 

The correlation coefficient is a statistical metric 

that exhibits the linear relationship between the 

master secret key and the generated round keys. Thus, 

an important feature of the key expansion algorithm 

is to break this linear relationship and make the 

algorithm resist all kinds of statistical attacks. If the 

coefficient value is 0 or near zero, there is no linear 

relationship between the master secret key and the 

generated round key. To check the KE-

DMM3DLMPS algorithm’s correlation coefficient, 

we use a 256-bit master secret key, shown below, and 

iterate KE-DMM3DLMPS twice to generate 128 

round keys. We then change these keys from protein 

sequences to binary sequences.   

Key = 

‘EKELKIFFAEVKTRTYLGTLIKSTDKDLLVLS

DPSIKEMEEIVVIGAAKAKGDHDWVDIDLYDD

’ 

The correlation coefficient (CC) between the 

master secret key and each round key can be 

calculated through Eqs. (12)-(15): 

 

𝑀 (𝑥) =  
1

𝐿𝐾
 ∑ 𝑥𝑗

𝐿𝐾
𝑗=1                (12) 

 

𝑉 (𝑥) =  
1

𝐿𝐾
 ∑ (𝑥𝑗 −  𝑀 (𝑥))2𝐿𝐾

𝑗=1              (13) 

 

𝐶(𝑥, 𝑦) =  
1

𝐿𝐾
 ∑ ((𝑥𝑗 −  𝑀 (𝑥))𝐿𝐾

𝑗=1 × (𝑦𝑗 −  𝑀 (𝑦)))

                 (14) 

 

𝐶𝐶𝑥𝑦 =  
𝐶 (𝑥,𝑦)

√𝑉(𝑥) ×  √𝑉(𝑦)
  , −1 ≤ 𝐶𝐶𝑥𝑦 ≤  1          (15) 

 

where 𝑥 and 𝑦 are the binary bits of the master secret 

key and each round key, respectively; 𝑀 (𝑥) is the 

mean; 𝑉 (𝑥)  is the variance; 𝐶(𝑥, 𝑦)  is the 

covariance; and 𝐿𝐾 is the length of the secret key in 

bits.  

From the correlation coefficient results in Fig. 5, 

we find there is no correlation between the master 

secret key and the generated round keys because all 

values of the correlation coefficients are near zero. 

4.6 Hamming distance (HD) 

Table 10 lists the generated round keys of the 

proposed KE-DMM3DLMPS algorithm and their 

hamming distances to the master secret key (MSK) 

with a size of 128 bits, concluding that the HD for 

each round key and the average hamming distances 

(AHDs) of all round keys are close to the optimal 

value. To further assess the effectiveness of the 

suggested key expansion technique, we produced 

3,840 round keys with lengths of 128-bit, 256-bit, 

512-bit, and 1024-bit. The AHDs between each 

master secret key and its corresponding round keys, 

as displayed in Table 11, indicate that the AHDs 

closely approximate the optimal values of 64, 128, 

256, and 512. Therefore, we could deduce that the 

suggested key expansion method meets the principle 

of irreversibility, i.e., no sub-key can deduce the 

master secret key. 
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Table 10. The 128-bit round keys and their hamming distance 

Round MSK and Round Keys HD NBCR 

MSK 'AMLRFWGQVSCQLIFRESLWPHNFQCGHMYRC'   

1 'PTQRMVQHALWCMHPENFLQVTNISWVYIHWL' 72 56.2500 

2 'GNCQKWGRFTICEYLTHPQYSHGQCRLEDWYE' 53 41.4063 

3 'CVASMQIYHVMLPERISAFEDTYANDMYILFS' 66 51.5625 

4 'DGLKSHPILQAVNSGDYVTWHDMTLHSQYGEI' 67 52.3438 

5 'WKNAFYMKVFIMTSNWPDKWIGTMLDISQAET' 63 49.2188 

6 'ICGDWVLRSHEVTYFHPTGFRDESQCHSGNRF' 59 46.0938 

7 'IRTHAQTVSDNMAVILPCDTQRPKFNQEKVND' 66 51.5625 

8 'WLQTSGKDVWCFMDYHLFIYSLWGMCATFCSR' 68 53.1250 

9 'LYDCTMYHCWSNGPETGHAWCKEHSVLQWGTN' 65 50.7813 

10 'DALPRYTAQRNTMCLDWKADNEMTGKNCSPIM' 60 46.8750 

11 'GMWLCGPESAFHMACVPGRHCENYTPAMSYLQ' 62 48.4375 

12 'SFTWGKAYHRVKNMIRDNTIYWVHQFRHTCYI' 56 43.7500 

13 'HCGVIPKCADFPRANFVMKIWEPINLVFYENM' 57 44.5313 

14 'FVYTMHDLGNELYPMTWNYHCRKMLEDRVITE' 58 45.3125 

15 'FQVRTFLVIGWYPKRYLCIVAKLGMENIYRWE' 62 48.4375 

16 'GYDWFVIKDTSQPFYGEQRNVGARDVFTEYLK' 63 49.2188 

17 'FRGVWATLMYHLGNWVDYGACPKWLHTPRSVH' 62 48.4375 

18 'MLSNTMWSHCIPKYNPWEHSGYWCRFDHPNIF' 57 44.5313 

19 'WRHTSGMYFINWFTLGSCNTMPEAGFWYEHDS' 70 54.6875 

20 'DQWIRQNYHPVINECFLHQRDFAMPRSANPHE' 66 51.5625 

21 'ANCIPAECMWQKHYIKERMCFYEWVLDMKIQL' 65 50.7813 

22 'YPLDEIARNPEVMHWADLGHQKRLCQERAVGD' 62 48.4375 

23 'MNYKPGMTFEPWTLEYQGKVRPKLIYEARLQC' 60 46.8750 

24 'VLHNQWKLYIEWMYFENCKQPAWQFSNERAFC' 66 51.5625 

25 'INDMENHTFLWMHCKYSFNEIYVPLEAVHLFC' 64 50 

26 'KGMWSDKRPHTMNCQHFEWCVFKWMRQNADCN' 75 58.5938 

27 'CVIQMYRVWMERFKICSHVCELFRNHEKDQGF' 66 51.5625 

28 'FHNDTRFYWGQNMCAGEVDCKEFDNYAMSRCM' 70 54.6875 

29 'ADQFAGNPKSQGEYHIPAFLHMCKFRMGKPEL' 66 51.5625 

30 'PRKENQVTCHVRMEKFCRNYWSEVHQWPAKHG' 76 59.3750 

31 'NWPSCEAWQCKARFPNIGWNKYRADGKFTSLR' 69 53.9063 

32 'FVGQEYPQLMFCWYLVRHNFQPGHSACPISLC' 52 40.6250 

Average  63.84 49.8779 

 

 
Table 11. The average hamming distances and NBCRs of 

3840 round keys 

Length of MSK 
Average 

HDs 

Average 

NBCRs (%) 

128-bit 63.9789 49.9591 

256-bit 128.0799 50.0312 

512-bit 255.9901 49.9981 

1024-bit 512.1607 50.0157 

 

4.7 The number of bit change rate (NBCR) 

The number of bit change rate can be used to 

measure how sensitive the initial key is to the key 

expansion algorithm [38]. The NBCR of two 

sequences of keys, K1 and K2, can be determined 

using Eq. (16): 

 

NBCR =  
HD (K1,K2)

Len
 × 100 %              (16) 

 

where Len is the length of K1 or K2, and HD (K1, 

K2) calculates the Hamming distance between K1 

and K2. The optimal NBCR value is 50%, which can 

be obtained when two keys are fully independent. 

Tables 10 and 11 reveal that all of the average 

NBCRs between the round keys and the master secret 

key are near the optimal value of 50%. This 

demonstrates the independence between the master 

secret key and the round keys. 
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Figure. 6 Key Sensitivity Analysis of KE-DMM3DLMPS 

 

 
Table 12. The Results of the Initial Key Sensitivity 

Length of 

MSK 

Average 

HDs 

Average 

NBCRs (%) 

128-bit 64.1464 50.1144 

256-bit 128.1120 50.0438 

512-bit 255.9828 49.9966 

1024-bit 512.1748 50.0171 

 

4.8 Sensitivity of the initial key 

The most important feature of any secure key 

expansion algorithm is key sensitivity, as it requires 

high sensitivity of the secret key. This means that a 

very small change between the two master secret keys 

can cause a significant difference between their two 

round keys. 

To test the key sensitivity of the proposed KE-

DMM3DLMPS algorithm, a master secret key with a 

length of 256 bits is determined, and then one bit is 

randomly chosen from this key and changed for the 

purpose of creating two master secret keys that differ 

in only one bit, as follows, where the change in bit is 

in blue color (M = 1000, Q = 1001): 

Key1 = 

VLNQYQNKSAPHAMTSRCERVRDHWFMGYC

GSMYMWTDKWNATFEQTCKIGHPIDFIGPEL

VAC 

Key2 = 

VLNQYQNKSAPHAMTSRCERVRDHWFMGYC

GSMYQWTDKWNATFEQTCKIGHPIDFIGPELV

AC 
After that, each of the two master secret keys 

above is entered into the KE-DMM3DLMPS 

algorithm in order to obtain their respective round 

keys. To calculate the difference between the round 

keys generated for each of the two keys above, we 

calculate the difference (pairwise distance) between 

the amino acids for each sub-key pair 

( 𝑠𝑢𝑏𝑘𝑒𝑦𝑖 (𝑘𝑒𝑦1) and 𝑠𝑢𝑏𝑘𝑒𝑦𝑖 (𝑘𝑒𝑦2) ). If the amino 

acids are completely different, then the difference 

value (Ω) is equal to one, and if they are similar, then 

the Ω value is equal to zero. After calculating the 

differences between all sub-key pairs of the two keys 

above for 64 round keys, it was found that the average 

of all Ω values is equal to 0.9514. This value is close 

to one, which indicates high sensitivity to changing 

one bit of the master secret key. We conducted the 

experiment 64 times, utilizing various pairs of master 

secret keys, and Fig. 6 displays the results. We 

conclude that the proposed method is highly sensitive 

because all values are close to one.  

To further evaluate the initial key sensitivity of 

the proposed algorithm, we change one bit from the 

128-bit, 256-bit, 512-bit, and 1024-bit master secret 

keys (𝑀𝑆𝐾𝑖) to obtain four new master secret keys 

(𝑀𝑆𝐾𝑖
⸍), and generate 3840 round keys for each of 

them ( 𝑀𝑆𝐾𝑖  and 𝑀𝑆𝐾𝑖
⸍ ), then calculate the 

Hamming distance and the NBCR between each pair 

of round keys (i.e., between 𝑟𝑜𝑢𝑛𝑑𝒋
128  and 

𝑟𝑜𝑢𝑛𝑑𝒋
128Ꞌ  and so on). From what is shown in Table 

12, we can deduce that the average NBCRs and HDs 

are getting closer to their optimal values. This implies 

that a change of one bit from the master secret key 

yields good results and that the suggested algorithm 

is very sensitive to the master secret key, satisfying 

the strict avalanche effect (SAC).  

4.9 Analysis of confusion and diffusion 

Confusion and diffusion are two significant 

evaluation criteria in the key expansion algorithm. 

Confusion aims to make the relationship between the 

master secret key and the round keys as complicated 

as possible, while diffusion ensures that even a slight 

change in the master secret key will have a 

widespread effect on all bits of the round key [7]. 

A perfect outcome is that a single-bit change in 

the master secret key will lead to a 50% alteration in 

the bits of the round key [38]. In this context, a 

specific master secret key(𝑀𝑆𝐾) is chosen, and then 

only one bit of that key is changed to obtain a new 

master secret key (𝑀𝑆𝐾⸍) with a difference of only 

one bit, and we generate 3840 round keys for each. 

Each round key generated from the 𝑀𝑆𝐾  is then 

compared with the corresponding round key 

generated from the 𝑀𝑆𝐾⸍  bit by bit to obtain the 

number of flipped bits (NFB). From Fig. 7, it is 

apparent that the NFBs are centered around 64, 128, 

256, and 512 bits. This suggests that the proposed key 

expansion technique is very sensitive to confusion 

and diffusion. 
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(d) 

Figure. 7 Number of different bits distribution: (a)128-bit master secret key, (b)256-bit master secret key, (c)512-bit 

master secret key, and (d)1024-bit master secret key 

 

 
Table 13. Comparison of the NIST test suite results 

Statistical Test 
P-value in 

this research 

P-value in 

Ref. [12] 
P-value in 

Ref. [13] 

P-value in 

Ref. [14] 

P-value in 

Ref. [17] 

Frequency  0.875291 0.382115 0.576150 0.739918 0.7542 

Block Frequency 0.654822 0.082010 0.859684 0.179120 0.6523 

Cumulative Sums 0.804396 0.650549 0.586368 0.534146 0.8564 

Runs  0.447751 0.197981 0.695002 0.350485 0.3265 

Longest Runs of Ones 0.571849 0.498313 0.296950 0.179120 0.1542 

Rank 0.436898 0.363593 0.693720 0.035174 0.6589 

Spectral DFT 0.483807 0.015816 0.123812 0.213309 0.5421 

Non-Overlapping Templates 0.460300 0.163643 Not defined  0.122325 0.3265 

Overlapping Templates 0.999988 0.060112 Not defined  0.430102 0.6953 

Universal 0.996711 0.401192 Not defined  0.122325 0.4526 

Approximate Entropy 0.753984 0.076131 1.000000 0.350485 0.3574 

Random Excursions 0.341179 0.095397 Not defined  0.911413 0.1594 

Random Excursions Variant 0.675457 0.524892 Not defined  0.534146 0.6532 

Serial 0.595208 0.843974 0.498531 0.035174 0.3254 

Linear Complexity 0.861094 0.001046 0.919689 0.739918 0.9658 

 

 

4.10 Differential attack analysis 

Differential attacks are concerned with attacking 

the master secret key, where attackers try to find out 

whether a particular modification to the master key 

might lead to a specific difference in the key output 

of each round [12]. As demonstrated in Sections 4.7 

and 4.8 through experimentation, a 1-bit change to 

the master secret key will get NBCR very close to the 

optimal value of 50%. Hence, we can deduce that our 

suggested technique is capable of effectively 

blocking differential attacks. 
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Table 14. Comparison of the key space 

Research 
Initial 

 key size 
key space 

Ref. [13] 128-bits 2128 

Ref. [14] 64-bit 216 

Ref. [15] 128-bits 2128 

Ref. [16] 128-bits 264 

Ref. [17] 128-bits 2128 

Ref. [18] 128-bits 2128 × 1045 

KE-DMM3DLMPS 128-bits 20 × 2471 

 

5. Comparison results 

After evaluating the performance of the proposed 

KE-DMM3DLMPS algorithm through several 

different tests and proving the strength and security 

of our proposed algorithm, in this section an 

evaluation between KE-DMM3DLMPS and some 

other key expansion algorithms is presented. The 

comparison is based on the NIST test suite, histogram 

analysis, and key space analysis. Table 13 shows the 

NIST test suite results of the compared key expansion 

algorithms. The KE-DMM3DLMPS passed all tests 

successfully and with almost the best p-values 

compared to the results of the previous studies that 

were evaluated with the NIST test suite. The KE-

DMM3DLMPS achieved a higher P-value, which 

means that the generated round keys are very random. 

Furthermore, no one of the previous studies used 

histogram analysis except Ref. [17], but the result is 

not in an ideal uniform distribution in spite of the fact 

that it used DNA sequences while the proposed KE-

DMM3DLMPS algorithm depended on protein 

sequences. As displayed previously in Fig. 4, the 

amino acids of the round keys are completely evenly 

distributed, thus the histogram of the proposed KE-

DMM3DLMPS algorithm is in an ideal uniform 

distribution. This ensures strict resistance against 

statistical analysis attacks. 

Finally, Table 14 shows the comparison of the 

proposed KE-DMM3DLMPS algorithm and the 

previous studies based on the key space, indicating 

that the suggested algorithm has a larger key space 

and a significant level of security against brute force 

assaults. 

6. Conclusions 

A novel and secure key expansion method was 

proposed based on Dynamic Mealy Machine, 3D 

Logistic Map, and Protein Sequence. The proposed 

KE-DMM3DLMPS algorithm was introduced to 

solve the problem of sub-key randomness and some 

related key attacks. Through the results of analysis 

and comparisons of the proposed method with some 

related studies for the purpose of evaluating the 

performance of the proposed method, we can 

conclude the following points: 

• The ability of KE-DMM3DLMPS to generate a 

different number of round keys with the desired 

lengths. 

• The generated round keys have a higher degree 

of randomness by passing all of the NIST tests. 

• A uniform and ideal distribution of the amino 

acids present in each round key, which ensures 

strict resistance against statistical analysis 

attacks. 

• A higher key space of up to 20 × 2471, 

indicating a significant level of security against 

brute force assaults. 

• The ability of KE-DMM3DLMPS to break the 

linear relationship between the master secret 

key and the generated round keys is evidenced 

by the fact that all correlation coefficients 

exhibit values in close proximity to zero. 

• The KE-DMM3DLMPS satisfies irreversibility 

and independence by having ideal values of 

average hamming distances and NBCRs, 

respectively.  

• The proposed key expansion algorithm also 

manages to maintain its sensitivity to a one-bit 

change in the master secret key at 95 percent, 

satisfying the strict avalanche effect (SAC). 

• The KE-DMM3DLMPS ensures Confusion and 

Diffusion. 

• It is capable of effectively blocking differential 

attacks. 
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