
Received: February 8, 2024. Revised: March 1, 2024. 171

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.15

Unprecedented Security Analysis Results for a Novel Key Expansion Algorithm

Based on Protein Sequences, Dynamic Mealy Machine, and 3D Logistic Map

Radhwan Jawad Kadhim1* Hussein K. Khafaji2

1Informatics Institute for Postgraduate Studies, Iraqi Commission for Computers and Informatics, Baghdad, Iraq

2Computer Engineering Department-Al-Rafidain University College, Baghdad, Iraq
* Corresponding author’s Email: phd202110686@iips.edu.iq; hussain.ketan.elce@ruc.edu.iq

Abstract: The key expansion algorithm is an important part of any symmetric block cipher system since its

effectiveness directly impacts the security of the entire block cipher; if it is not strong enough, the whole cryptosystem

could be broken. Therefore, the round keys must be generated in a very secure way so that they cannot be attacked at

all. Despite its great importance, cryptographic algorithm designers were not as interested in creating a secure round

keys generation algorithm as they were in encryption itself. In this regard, designing a novel, simple, and flexible key

expansion algorithm that generates round keys with secure characteristics is the aim of this research. The proposed

Key Expansion algorithm is based on Dynamic Mealy Machine, 3D Logistic Map, and Protein Sequence (KE-

DMM3DLMPS). The strength of the proposed KE-DMM3DLMPS algorithm is tested using flexibility, the NIST

SP800-22 randomness test suite, histogram analysis, key space analysis, correlation coefficient, hamming distance,

number of bit change rate, initial key sensitivity, confusion and diffusion, and differential attack. In comparison to

some existing algorithms, experimental results showed that the generated round keys by the proposed KE-

DMM3DLMPS algorithm passed all the NIST tests with higher randomness, a uniform and ideal distribution of the

amino acids present in each round key, and a higher key space of up to 20 × 2471. Furthermore, the KE-DMM3DLMPS

avoids the linear relationship between the master secret key and the generated round keys and is capable of effectively

blocking differential attacks. The proposed algorithm successfully adheres to key cryptographic principles such as

irreversibility, independence, the strict avalanche effect, confusion, and diffusion. Through comprehensive testing and

comparisons, the derived conclusion asserts that our algorithm stands as an efficient and secure solution. Its

applicability extends to any symmetric block cryptosystem, with the primary goal of enhancing encryption and

bolstering security.

Keywords: Key expansion, Symmetric block cipher, 3D logistic map, Mealy machine, Protein sequence, NIST tests,

Key space, Initial key sensitivity, Irreversibility, Independence, Strict avalanche effect.

1. Introduction

Security is crucial in the storage and transmission

of information across networks, ensuring that it is

protected and delivered in a secure manner between

different locations [1]. Therefore, ensuring secure

communication is an essential prerequisite for any

transactions conducted across networks.

Cryptography plays a crucial role in guaranteeing the

secure transmission of data by employing security

measures such as authentication, data integrity, non-

repudiation, access control, and confidentiality. Data

confidentiality is the safeguarding of sensitive data to

prevent unwanted access by external entities [2].

Cryptography offers a means of safeguarding

confidential data by transforming it into

incomprehensible form, which can only be

deciphered by the authorized recipient to retrieve the

original information. The act of transforming plain,

readable information into coded, unreadable material

using a specific key is referred to as the encryption

process. Conversely, the act of decoding the

encrypted text back into its original form is known as

the decryption process [1]. The creation of a

completely secure cryptographic system is

Received: February 8, 2024. Revised: March 1, 2024. 172

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.15

challenging due to the persistent efforts of

cryptanalysts who are always attempting to

compromise any existing cryptographic systems[3].

Cryptographic systems can be classified into three

main types: symmetric cipher system, which uses a

secret key for both encryption and decryption,

asymmetric cipher system, which uses a public key

for encryption and a private key for decryption and

hashing function. Moreover, the symmetric cipher

system can be categorized into block and stream

ciphers based on the combination of message bits.

Symmetric block cipher system consists of five

primary components: plaintext, encryption algorithm,

ciphertext, decryption algorithm, and key expansion

algorithm(KEA)[4]. The key must possess sufficient

strength and length to prevent it from being

compromised through a brute-force attack[5]. In the

present day, it is advisable to utilize a minimum of a

128-bit key for symmetric algorithms[6]. In a

symmetric block cipher system, before starting the

encryption or decryption process, a key called master

secret key is used to derive the required number of

sub-keys (round-keys) based on the specified KEA.

To conceal the correlation between the round input

and round output, each sub-key is shuffled with the

round data. Therefore, creating a strong KEA plays a

crucial role in the advancement of any symmetric

block cipher system since its effectiveness directly

impacts the security of the entire block cipher[7]-[9].

Therefore, a KEA must generate sub-keys with a high

degree of randomness and also exhibit robust

confusion and diffusion characteristics, ensuring that

all derived sub-keys are independent of one another.

This guarantees that the compromise of any

individual sub-key does not disclose any details about

the secret key or other sub-keys. The entire

cryptosystem may be compromised if the KEA is

weak. One of the reasons for the weakness of the

KEA arises from the linear relationship between the

generated sub-keys and the master secret key, making

the cryptosystem potentially vulnerable to

differential, linear, related-key, statistical, and slide

attacks [7][10]. A strong and secure KEA enhances

the entire cipher’s resistance against various assaults,

including the mentioned attacks and others.

In the literature, designing a strong and secure

KEA has received less attention compared to

encryption techniques[10], [11]. However,

Harmouch and El Kouch [12] incorporated the

concept of chaos into the key schedule (expansion)

algorithm, resulting in the development of a new key

scheduling method called CKSA, which is based on

logic maps. This suggested algorithm is a one-way

function that guarantees effective confusion and

diffusion, as well as a good avalanche effect. But the

randomization degree of this method is not

sufficiently high, according to the NIST test suite.

Which means that the generated round keys have

weak randomness and low complexity. Wang et

al.[13] proposed a key expansion algorithm based on

the chaotic map and genetic algorithm. Ten out of

fifteen tests have passed the randomization tests of

the NIST test suite, while the rest were not explained.

Poojari and H R[14] proposed a novel method that

generates random numbers by utilizing the

scrambling algorithm and Linear Feedback Shift

Register to produce only five sub-keys for the

lightweight encryption algorithms, each sub-key with

a length of 16 bits. Therefore, the key length is not

sufficient to resist the brute force attack. The

randomness of the generated sub-keys is tested using

only the NIST test suite. The extent of the linear

relationship of the generated sub-keys to the master

secret key was not measured. Zakaria et al. [15]

enhance the RECTANGLE key expansion algorithm

to augment its confusion and randomization

characteristics in addition to the performance results

regarding speed and throughput. However, the two

designs did not pass all of the NIST tests. Garba et al.

[16] proposed a simple key expansion algorithm.

Only four tests out of the 15 NIST tests were used to

evaluate the performance of the algorithm. Some of

the sub-keys did not pass the poker, serial, and

frequency tests. Therefore, any sub-key that does not

pass the frequency test is not considered random, and

thus the algorithm is unsafe. Alawida et al. [17]

proposed a new method to generate round keys from

a given secret key based on finite state machine and

DNA sequence. This method is not very sensitive to

single-bit changes because, when the experiment was

repeated for 64 different secret keys, it was found that

there are three sub-keys that are exactly similar to the

secret key, with an average difference equal to zero.

Xu and Liu [18] use a primitive polynomial over

GF(2n) and a 2D nondegenerate exponential chaotic

map to build a key expansion algorithm. The round

keys are mutually independent, and the algorithm

successfully satisfies the irreversibility and

parallelism requirements. The NIST test suite has not

assessed the randomness of the generated keys, and it

is also challenging for readers who are unfamiliar

with the subject to understand this key generation

method to demonstrate that it is secure.

In this regard, this scientific paper proposes a

novel key expansion algorithm based on Dynamic

Mealy Machine, 3D Logistic Map, and Protein

Sequence (KE-DMM3DLMPS), which can be used

for any symmetric block cipher system. The proposed

KE-DMM3DLMPS algorithm can produce strong

and secure round keys and overcoming all the

Received: February 8, 2024. Revised: March 1, 2024. 173

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.15

problems highlighted in previous studies. The

following are this study’s contributions and

novelties:

• Incorporate the concepts of Mealy Machine, 3D

Logistic Map, and Protein Sequence to propose

a novel key expansion algorithm (KE-

DMM3DLMPS), which can be used for any

symmetric block cipher system. The protein

sequences are not utilized for the purposes of

key expansion or data encryption.

• Proposing a new method for encoding amino

acids called (Amino Acid Binary Encoding

Rule) for the purpose of using them later in

encryption or key expansion operations.

• The ability to generate a different number of

round keys with the desired lengths, which

allows many people interested in cryptography

to use this algorithm.

• Generate round keys with a high degree of

complexity and randomness by passing all of the

NIST tests.

• A uniform and ideal distribution of the amino

acids present in each round key, which ensures

resistance to statistical analysis attacks.

• A very high key space of up to 20 × 2471.

• Breaking the linear relationship between the

master secret key and the generated round keys.

• The suggested key expansion method meets the

following principles:

o Irreversibility: no sub-key can deduce the

master secret key.

o Independence: all generated sub-keys are

independent of each other.

o Initial key sensitivity: it is very sensitive to

the master secret key, satisfying the strict

avalanche effect (SAC).

o Confusion: making the relationship

between the master secret key and the

round keys as complicated as possible.

o Diffusion: ensuring that even a slight

change in the master secret key will have a

widespread effect on all bits of the round

key.

• The suggested technique is capable of

effectively blocking differential attacks.

• The proposed KE-DMM3DLMPS algorithm is

compared with previous studies based on the

NIST test suite, histogram analysis, and key

space analysis. We conclude that our proposed

model outperforms the existing algorithms.

The subsequent sections of this study are

structured in the following manner: Section 2

discusses the context of the suggested scheme. The

design of the proposed key expansion algorithm is

Table 1. The genetic code [19]

outlined in Section 3. Section 4 explains the

assessment of experimental results for the suggested

method. Section 5 focuses on comparing the

proposed method with some key expansion

algorithms. Section 6 presents the conclusions of this

research.

2. Context of the suggested scheme

In the following section, we include some

background material on protein sequence, PAM250

matrix, 3D Logistic map and the Mealy Machine

because both of these concepts are important to the

suggested Key Expansion Scheme.

2.1 Protein sequence

Deoxyribose nucleic acid, or DNA, is a very big

molecule that carries genetic information and

features that are vital to the survival and development

of every living organism [19]. DNA is typically made

up of two long strands that run in opposing directions,

forming a double helix. Each strand is composed of a

lengthy chain of subunits. The building blocks of the

subunits are termed nucleotides, and each nucleotide

is composed of a phosphate group, a nitrogenous base,

and either a purine or pyrimidine base. Two types of

nitrogenous bases are distinguished: the pyrimidine

bases, Thymine (T) and Cytosine (C), which

constitute the “genetic code,” and the purine bases,

Adenine (A) and Guanine (G). Thymine (T) and

Cytosine (C) are the pairings of Adenine (A) and

Guanine (G) respectively [19, 20]. The biological

system of any living organism depends on how these

four bases are arranged, as this determines the type

of protein molecule and drives all activity in living

cells. Furthermore, distinct protein types have varied

functions [21]. Transcription is the term for the

complex and protracted process known as central

dogma that converts DNA to RNA (ribonucleic acid),

which is thought to be a step in the synthesis of

Received: February 8, 2024. Revised: March 1, 2024. 174

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.15

Table 2. PAM250 Matrix[22] (for only 8 amino acids)

Amino

Acid
A R N D C Q E G H I L K M F P S T W Y V

A 2 -2 0 0 -2 0 0 1 -1 -1 -2 -1 -1 -3 1 1 1 -6 -3 0

T 1 -1 0 0 -2 -1 0 0 -1 0 -2 0 -1 -3 0 1 3 -5 -3 0

E 0 -1 1 3 -5 2 4 0 1 -2 -3 0 -2 -5 -1 0 0 -7 -4 -2

K
-

1
3 1 0 -5 1 0 -2 0 -2 -3 5 0 -5 -1 0 0 -3 -4 -2

I
-

1
-2 -2 -2 -2 -2 -2 -3 -2 5 2 -2 2 1 -2 -1 0 -5 -1 4

V 0 -2 -2 -2 -2 -2 -2 -1 -2 4 2 -2 2 -1 -1 -1 0 -6 -2 4

N 0 0 2 2 -4 1 1 0 2 -2 -3 1 -2 -3 0 1 0 -4 -2 -2

P 1 0 0 -1 -3 0 -1 0 0 -2 -3 -1 -2 -5 6 1 0 -6 -5 -1

Figure. 1 Chaotic behavior of a 1D logistic map for 1000

iterations

Figure. 2 Chaotic behavior of a 3D logistic map for 1000

iterations

proteins [20]. Translation is the process that converts

RNA into the amino acids that make up a protein

molecule. Codons are groups of three consecutive

nucleotides that are extracted from RNA during

translation. Each codon represents an amino acid, and

the arrangement of these amino acids determines the

structure and function of the resulting protein [19],

[21-23]. Most of the twenty amino acids that can be

produced from distinct codons can be produced from

several codons, as Table 1 illustrates. Three STOP

codons serve as additional markers for the protein

sequence’s end in addition to amino acids [24].

2.2 PAM250 scoring matrix

The PAM250 matrix, also known as the Point

Accepted Mutation Version 250 matrix [22], is

derived by iteratively multiplying the PAM1 matrix

with itself for a total of 250 iterations. This matrix is

widely employed in BLAST searches of databases. It

is a widely employed tool in the field of

bioinformatics, specifically for the purpose of

matching amino acid sequences. Its primary function

is to assign a numerical score to each alignment,

facilitating the comparison and evaluation of

different alignments. The intersection of amino acids

inside the matrix corresponds to a distinct score that

quantifies the degree of their potential interactions

with other amino acids in the matrix, as explained in

Table 2.

2.3 Chaotic map

Chaos maps are currently used in the area of

encryption due to their benefits and ability to improve

encryption system security[25]. They are dynamical

systems that lack linearity and are highly sensitive to

the initial conditions, which display random behavior

in response to those initial conditions. These

conditions include the values allocated to the system

parameters, as explained below [26]. Different kinds

of chaotic maps have been used by researchers, but

Received: February 8, 2024. Revised: March 1, 2024. 175

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.15

the one-dimensional (1D) logistic map is probably

the most simple and well-known map and is defined

in Eq. (1) [27, 28], as follows:

𝑥𝑛+1 = 𝜆𝑥𝑛(1 − 𝑥𝑛) (1)

Here, 𝑥𝑛 is the state variable (0 < 𝑥𝑛 < 1), 𝜆 is

the system parameter (0 < 𝜆 < 4), and 𝑛 is the

number of iterations needed to iteratively produce the

state values. It was proved that the sequences

generated in a 1D logistic map and at 3.56994 < 𝜆 ≤
4 lead towards chaotic behavior [29] , as shown in

Fig. 1.

A 1D chaotic map can be expanded into a three-

dimensional (3D) chaotic map, which offers a high

level of unpredictability and thus more security, as

explained in Eqs. (2)-(4) [30].

𝑥𝑖+1 = 𝛼𝑥𝑖(1 − 𝑥𝑖) + 𝛽𝑦𝑖
2𝑥𝑖 + 𝜎𝑧𝑖

3 (2)

𝑦𝑖+1 = 𝛼𝑦𝑖(1 − 𝑦𝑖) + 𝛽𝑧𝑖
2𝑦𝑖 + 𝜎𝑥𝑖

3 (3)

𝑧𝑖+1 = 𝛼𝑧𝑖(1 − 𝑧𝑖) + 𝛽𝑥𝑖
2𝑧𝑖 + 𝜎𝑦𝑖

3 (4)

Chaotic behavior is exhibited when the values of

the parameters 𝛼, 𝛽, and 𝜎 fall within the specified

ranges of 3.53 < 𝛼 < 3.81, 0 < 𝛽 < 0.022, and 0 < 𝜎 <

0.015, respectively. Additionally, the variables 𝑥0 ,

𝑦0, and 𝑧0 are constrained to the interval [0, 1].

Fig. 2 illustrates the full chaotic nature and dynamical

behavior of the three-dimensional logistic map,

which exhibits a higher degree of randomness

compared to its one-dimensional counterpart and can

be effectively employed as a pseudo-random number

generator in building the private secret tables for a

mealy machine.

2.4 Mealy machine (MM)

In computation theory, the Mealy machine is

defined as a finite-state machine [31]; MM can be

used in a cryptographic field to achieve a more secure

system [32]-[35], where its output depends on the

present state and the present input of the machine [35].

It is defined by six tuples, i.e., M = (Q, I, O, δ, Ω, q0).

Such that:

• Q represents a collection of non-empty, finite

states.

• I and O represent a collection of finite input

and output alphabets, respectively.

• q0 represents the initial state, where q0 ∈ Q.

Figure. 3 Design of MM with two states

Table 3. Mealy machine state table

Input transition function δ: Q × I → Q

Present

State

Input = 0 Input = 1

Next State Next State

X x y

Y y x

Table 4. Mealy machine output table

Output transition function Ω: Q × I → O

Present

State

Input = 0 Input = 1

Output Output

x 1 0

y 0 1

• δ represents the input transition function, such

that δ: Q × I → Q.

• Ω represents the output transition function,

such that Ω: Q × I → O.

An example of Mealy machine is as follows:

− Q = {x, y}

− I = {0, 1}

− O= {0, 1}

− q0 = x

As depicted in Fig. 3 as a transition diagram, the

Mealy machine in this example consists of two states

(‘x’ and ‘y’), where ‘x’ is the initial state. The binary

bits 0 and 1 are considered input and output alphabets.

The Mealy machine in this example is used to convert

any binary string into another binary string.

The design of the Mealy machine is based on the

state and output tables, as shown in Tables 3 and 4.

Assume the binary string 1011101 is the Mealy

machine’s input. The machine starts from the initial

state ‘x’ and reads the first input symbol ‘1’; therefore,

the output string is ‘0’, and it moves to state ‘y’. Then

the next binary sting read is ‘0’, so the output

machine is ‘0’, and the machine stays in the state ‘y’.

This procedure is iterated until all the input binary

strings have been used. Finally, the Mealy machine

input string ‘1011101’ becomes ‘0010110’.

3. Proposed key expansion algorithm design

This section discusses the materials and methods

used to design a novel, robust, and secure key

Received: February 8, 2024. Revised: March 1, 2024. 176

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.15

Table 5. Amino acid binary encoding rule

Amino

 Acid

Three

letters

 Code

One

letter

code

4 bits

 Binary

code

Cysteine Cys C 0000

Aspartic Acid Asp D 0001

Phenylalanine Phe F 0010

Alanine Ala A
0011

Threonine Thr T

Glycine Gly G 0100

Glutamic Acid Glu E
0101

Lysine Lys K

Histidine His H 0110

Leucine Leu L 0111

Methionine Met M 1000

Glutamine Gln Q 1001

Isoleucine Ile I
1010

Valine Val V

Arginine Arg R 1011

Asparagine Asn N
1100

Proline Pro P

Serine Ser S 1101

Tryptophan Trp W 1110

Tyrosine Tyr Y 1111

expansion method that has the ability to create sub-

keys independent of each other, has high randomness,

a large key space, and some other good security

properties that enable it to be widely used in any

symmetric block cryptosystem. The proposed Key

Expansion algorithm is based on Dynamic Mealy

Machine, 3D Logistic Map, and Protein Sequence

(KE-DMM3DLMPS). Below is a detailed

explanation of the design of the proposed key

expansion method.

3.1 Conversion secret key to amino acid-bases

In computing domains like data encryption and

key generation, DNA ideas are commonly used. This

is because it is simple to translate each of the two

binary numbers (00, 10, 01, 11) into one of the four

nucleotides (A, C, G, and T). However, our

investigation revealed that no one has ever used a

protein sequence to expand the keys or encrypt data.

The twenty amino acids can be represented using five

bits [36]. We proposed to take the four most

significant bits to represent 20 amino acids. Therefore,

four amino acids will have the same binary

numbering when represented by four bits. According

to Table 2 in subsection 2.2, we conclude that the

score of the amino acid Alanine (A) is similar to the

score of the amino acid Threonine (T) in eleven

positions, the score of the amino acid Glutamic Acid

(E) is similar to the score of the amino acid Lysine

(K) in ten positions, the score of the amino acid

Isoleucine (I) is similar to the score of the amino acid

Valine (V) in thirteen positions, and the score of the

amino acid Asparagine (N) is similar to the score of

the amino acid Proline (P) in seven positions when

each of them interacts with all amino acids. So, we

will combine those amino acids that have a high

degree of similarity.

In Table 5, we proposed the Amino Acid Binary

Encoding Rule (AABER) for 20 amino acids to

facilitate the processes taking place on the protein,

such as Amino Acid exclusive-OR (AA-XOR),

which can be used during the suggested key

expansion algorithm. Assume ‘2f34e9a3’ is the secret

key that must be changed into amino acid bases. First,

this secret key must be converted to binary form.

Next, the binary value of the secret key ‘0010 1111

0011 0100 1110 1001 1010 0011’ must be pre-

processed to count the repeated number of binary

codes for the merged amino acids. If the number of

binary codes for the merged amino acids is greater

than one, then those amino acids are distributed

equally among those binary codes in order to give

equal shares to each of those amino acids. In this

example, the number of binary codes (0011) for the

merged amino acids (A and T) is two (Count_AT=2).

After the pre-processing step, each of the 4 bits must

be converted to an amino acid, according to Table 5,

taking into account the number of merged amino

acids. So, the binary secret key for this example

becomes as follows: FYAGWQIT.

3.2 Proposed protein operations

The twenty amino acids of a protein sequence can

be represented using four bits, as we proposed in

Section 3.1. There are in total 16!

(20,922,789,888,000) different ways to map these

four bits to the amino acids (also called amino acid

binary encoding rules); therefore, it is very difficult

for an attacker to guess the correct binary coding rule

for amino acids. For example, Table 5 is one of the

amino acid binary encoding rules out of 16!.

 Besides these amino acids binary encoding rules,

various protein operations can be carried out on these

twenty amino acids, such as Amino Acid (AA)

addition, AA subtraction, AA-XOR, and AA

complementary operation. The process of key

expansion holds significant importance in encryption

systems, with XOR playing a pivotal role in

augmenting both the speed and security of this

process. So, we will use the AA-XOR operation in

this research.

Received: February 8, 2024. Revised: March 1, 2024. 177

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.15

In order to apply the AA-XOR operation to amino

acids, the amino acids are first converted to the binary

sequence according to the rule in Table 5, and then

the usual XOR operations are performed (i.e., 0 xor 1

= 1, 1 xor 1 = 0). Next, we pre-process the binary

sequence to count the number of repeated binary

codes for the merged amino acids. If the number of

binary codes for the merged amino acids is greater

than one, then those amino acids are distributed

equally among those binary codes in order to give

equal shares to each of those amino acids. Finally, we

convert the binary sequence into an amino acid

sequence using the rule specified in Table 5. For

instance, if the two protein sequences are “CHAA”

and “RDYY”, then the XOR operation of those two

sequences is “RLNP”.

3.3 3D logistic map sequence generation

We can use the Chaos map system that was

previously explained in sub-section 2.3 to generate

the pseudorandom sequence, which can be exploited

as a secret key to build the mealy machine transition

tables. There is a need to use chaotic systems in the

cryptographic field because they naturally have

nonlinearity and random behavior, which makes it

possible to create pseudorandom sequences. The

subsequent procedure delineates the process of

sequence generation:

Step 1: Initial Values Generation

The initial values of 𝑥0, 𝑦0, and 𝑧0 in Eqs. (2)-(4)

are obtained from a 256-bit master key 𝑀𝐾, as shown

by the proposed Eqs. (5)-(7), where 𝑀𝐾 =
{𝐾1, 𝐾2, … , 𝐾32} , and each 𝐾 represents an 8-bit

binary number.

𝑋0 = 𝑚𝑜𝑑(𝐾1 ⊕ 𝐾2 ⊕ … ⊕ 𝐾10 + ∑ 𝐾𝑖
32
𝑖=1 /

 212 , 1) (5)

𝑌0 = 𝑚𝑜𝑑 (𝐾11 ⊕ 𝐾12 ⊕ … ⊕ 𝐾21 +
 ∑ 𝐾2𝑖+1

15
𝑖=0 / 212 , 1) (6)

𝑍0 = 𝑚𝑜𝑑 (𝐾22 ⊕ 𝐾23 ⊕ … ⊕ 𝐾32 + ∑ 𝐾2𝑖
16
𝑖=1 /

 212 , 1) (7)

where the symbol ⨁ denotes the exclusive OR

(XOR) operator. According to Eqs. (5)-(7), the initial

values of 𝑋0, 𝑌0, and 𝑍0 will be set within the interval

[0, 1]. For example, if the master key is:

𝑀𝐾 =‘895389AD00493BFEDF5A293B1E876B25C

6127E1C26C0FBE228F57CB0D7476053’, then 𝑋0,

𝑌0 , and 𝑍0 are equal to (0.97949, 0.46558, and

0.50049), respectively.

Step 2: 3D Logistic Map Sequence Generation

Firstly, iterate the Eqs. (2)-(4) for 𝑛 times, using

the initial values (𝑋0, 𝑌0, and 𝑍0) that were obtained

from step 1 and with (𝛼 = 3.80, 𝛽 = 0.021, and 𝜎 =

0.013). For each iteration, we can obtain three

decimal sequences (𝑋𝑖, 𝑌𝑖, and 𝑍𝑖) that lie between 0

and 1.
Secondly, convert the second and third sequences

(𝑌𝑖 and 𝑍𝑖) of the 3D Logistic Map into integer

sequences (𝐼𝑌𝑖 and 𝐼𝑍𝑖)between 1 and 20 in order to

use them in building state and output tables, as shown

in the proposed Eqs. (8) and (9):

𝐼𝑌𝑖 = 𝑚𝑜𝑑 (⌊ ((𝑌𝑖 + 100) × 1010) ⌋,20) + 1 (8)

𝐼𝑍𝑖 = 𝑚𝑜𝑑 (⌊ ((𝑍𝑖 + 100) × 1010)⌋,20) + 1 (9)

where ⌊x⌋ = maximum {a ∈ Z; x ≥ a}.

Thirdly, after applying Eqs. (8) and (9), all the

decimal sequences (𝑌𝑖 and 𝑍𝑖) of the 3D Logistic

Map will be converted to integer sequences (𝐼𝑌𝑖 and

𝐼𝑍𝑖), but duplicate values will appear. To obtain the

desired randomness, all repeated values are removed

and replaced with the remaining values within the

period from 1 to 20.

3.4 Design a dynamic mealy machine based on a

3D logistic map and protein sequences

(DMM3DLMPS)

The main objective of this sub-section is to

allocate values to the six tuples of the proposed mealy

machine. Since the input and the output of the mealy

machine are protein sequences, the tuples I and O are

sets of amino acid bases. Given that there are twenty

distinct amino acid bases and each state produces a

certain amino acid base, the machine is characterized

by twenty states, namely 1, 2, 3 ,4 ,5 ,6 ,7 ,8 9, 10, 11,

12, 13, 14, 15, 16, 17, 18, 19, and 20, where any state

of those twenty states can be assigned to the initial

state. The input transition function (δ: Q × I → Q)

and the output transition function (Ω: Q × I → O) are

generated randomly based on the 3D logistic map,

and the results are stored in the state table and the

output table, respectively. Therefore, the values that

were assigned to the six tuples can be summarized as

follows:

• Q = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9, 10, 11, 12, 13, 14,

15, 16, 17, 18, 19,20}

• I = {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R,

S, T, V, W, Y}

• O= {A, C, D, E, F, G, H, I, K, L, M, N, P, Q,

R, S, T, V, W, Y}

• δ = Randomly generated

• Ω = Randomly generated

Received: February 8, 2024. Revised: March 1, 2024. 178

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.15

Table 6. A section of a generated mealy machine state table

Input transition function δ: Q × I → Q

P
re

se
n

t

S
ta

te
 Input

A C D E F G H I K L M N P Q R S T V W Y

Next State

1 20 12 11 2 14 15 6 18 5 19 4 13 8 3 7 16 9 10 17 1

2 1 20 12 11 2 14 15 6 18 5 19 4 13 8 3 7 16 9 10 17

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

19 19 4 13 8 3 7 16 9 10 17 1 20 12 11 2 14 15 6 18 5

20 9 10 17 1 20 12 11 2 14 15 6 18 5 19 4 13 8 3 7 16

Table 7. A Section of a generated mealy machine output table

Output transition function Ω: Q × I → O

P
re

se
n

t

S
ta

te
 Input

D E A C F G H I L Y M K N Q R S P T W V

Output

1 Y L K N D M Q W T G I S A H V C P E R F

2 I S A H V C P E R F Y L K N D M Q W T G

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

19 C P E R F Y L K N D M Q W T G I S A H V

20 M Q W T G I S A H V C P E R F Y L K N D

• q0 = Assigned by the user (q0 = x | x ∈ 𝑄)

The design of the DMM3DLMPS is primarily

expressed by means of two transition tables, which

are referred to as the secret state table (SST) and the

secret output table (SOT). The SST store the input

transition function δ: Q × I → Q as shown in Table 6

and the SOT store the output transition function Ω: Q

× I → O as shown in Table 7. The values of the ‘next

states’ in Table 6 are allocated at random from the set

{1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9, 10, 11, 12, 13, 14, 15, 16, 17,

18, 19,20} based on the decimal numbers generated

from the second dimension of the 3D logistic map

(𝐼𝑌𝑛) and left shift as explained in Algorithm 1. The

values of the ‘Output’ in Table 7 are allocated at

random from the set {A, C, D, E, F, G, H, I, K, L, M,

N, P, Q, R, S, T, V, W, Y} based on the decimal

numbers generated from the third dimension of the

3D logistic map (𝐼𝑍𝑛) and left shift as explained in

Algorithm 2.

Algorithm 1. Proposed Secret State Table

Generation Algorithm

Input: 𝑰𝒀𝒏 // The second dimension of the 3D

logistic map

Output: 𝑺𝑺𝑻 // 𝑺𝑺𝑻 is a 20 × 20 double matrix

Step1. 𝑺𝑺𝑻 = zeros (20) // Initialize a 20 × 20 empty

matrix

Step2. Performing a left shift rotation and filling the

𝑆𝑆𝑇 matrix:

 for k from 1 to 20 do

 𝑹𝑬 = 𝑳𝒆𝒇𝒕𝑺𝒉𝒊𝒇𝒕 (𝑰𝒀𝒏 , − (𝑰𝒀𝒏 [k]))

 𝑺𝑺𝑻 [k , :] = 𝑹𝑬

 end k

For example, if 𝑰𝒀𝒏 =

[1,20,12,11,2,14,15,6,18,5,19,4,13,8,3,7,16,9,10,17],

then a fragment of SST is presented in Table 6.

Algorithm 2. Proposed Secret Output Table

Generation Algorithm

Input: The third dimension of the 3D logistic map

(𝑰𝒁𝒏), amino acids symbols (𝑨𝑨𝑺)

Output: 𝑺𝑶𝑻 // 𝑺𝑶𝑻 is a 20 × 20 cell matrix

Step1. 𝑺𝒉𝑨𝑨 = 𝑨𝑨𝑺 (𝑰𝒁𝒏 (𝟏 ∶ 𝟐𝟎)) // Shuffling of

(𝑨𝑨𝑺) based on the third dimension of the 3D logistic

map

Step2. 𝑺𝑶𝑻 = cell (20, 20) // Initialize a 20 × 20

empty matrix

Step3. Performing a left shift rotation and filling the

SOT matrix:

 for j from 1 to 20 do

 𝑹𝑽 = 𝑳𝒆𝒇𝒕𝑺𝒉𝒊𝒇𝒕 (𝑺𝒉𝑨𝑨 , − (𝑰𝒁𝒏 [j]))

 𝑺𝑶𝑻 [j , :] = 𝑹𝑽

 end j

Received: February 8, 2024. Revised: March 1, 2024. 179

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.15

For example, if 𝑰𝒁𝒏 =

[20,10,9,12,3,11,14,19,17,6,8,16,1,7,18,2,13,4,15,5]

and AAS = {A, C, D, E, F, G, H, I, K, L, M, N, P, Q,

R, S, T, V, W, Y}, then a section of SOT is presented

in Table 7.

3.5 Generating of round keys

In the proposed KE-DMM3DLMPS algorithm,

we create a mealy machine that consists of 20 states.

Each state has 20 bidirectional transitions, which are

linked to other states and the state itself, and these

transitions are symbols for the amino acids of the

protein, as discussed in Section 3.4. The transitions

between these states are controlled by the secret key.

Before starting the key expansion process, as shown

in Algorithm 3, the proposed algorithm distributes a

copy of the master secret key (MSK) to all 20 states,

such that each state holds a copy of MSK, as shown

in Step 1. The master secret key is in the form of a

protein sequence, as explained in Section 3.1. Each

state, in turn, subsequently carries out two logical

processes on its secret key, namely: AA-XOR and

amino acid-left shift rotation (AA-LSR), and these

two logical processes depend on the addresses of the

twenty amino acids (A, C, D, E, F, G, H, I, K, L, M,

N, P, Q, R, S, T, V, W, Y). In Step 2, the user must

select the starting state (𝐴𝑐𝑡𝑣𝑠𝑡) from which they

wish to start. After that, the algorithm picks up the

first amino acid from the secret key found in the

starting state (𝐴𝑐𝑡𝑣𝑎𝑎), as explained in step 3. In step

4, the proposed key expansion algorithm starts by

performing an AA-XOR process between the 𝐴𝑐𝑡𝑣𝑎𝑎

and all the amino acids found in the key of this state

(𝑆𝐾𝑠𝑡 { 𝐴𝑐𝑡𝑣𝑠𝑡 }). After completing the AA-XOR

process, we apply the AA-LSR process to all the

bases in that key to eliminate any possible

redundancy between the round keys. For each amino

acid base, there is a fixed number. For A, C, D, E, F,

G, H, I, K, L, M, N, P, Q, R, S, T, V, W, and Y, the

fixed numbers are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18, 19, and 20, respectively. The

number of left-shift rotations is determined by

multiplying the fixed number with the state number.

The updated secret key, which is the result of the AA-

LSR process, becomes the secret key in this state and

serves as the first-round key, controlling the KE-

DMM3DLMPS, as demonstrated in the example

below.

For the second-round key, the KE-

DMM3DLMPS algorithm examines the second

amino acid in the updated secret key in the starting

state, known as the 𝑁𝑥𝑡𝑎𝑎, to determine the new state

to move to. The mealy machine (𝑀𝑀) takes the 𝑆𝑆𝑇,

𝑆𝑂𝑇, 𝑁𝑥𝑡𝑎𝑎, and the 𝐴𝑐𝑡𝑣𝑠𝑡 as input to determine

the output of the second amino acid (𝑂𝑎𝑎) and the

new state (𝑁𝑠𝑡). The KE-DMM3DLMPS algorithm

then does an AA-XOR operation on the output of the

second amino acid and all the amino acids of the key

in the new state. After completing the AA-XOR

process, the proposed algorithm applies the AA-LSR

process to all the bases of the XORing key. The

updated secret key, which is the result of the AA-LSR

process, becomes the secret key in this state and

serves as the second-round key. The proposed

algorithm will continue with this procedure based on

the size of the entered secret key, such that in each

state there are N protein base updates. The number of

rounds is calculated according to Eq. (10) because

each base needs 4 bits to be represented in binary.

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑜𝑢𝑛𝑑𝑠 = 𝑘𝑒𝑦 𝑙𝑒𝑛𝑔𝑡ℎ 𝑖𝑛 𝑏𝑖𝑡

4
 (10)

For example, if the size of the secret key is 256 bits,

then the KE-DMM3DLMPS algorithm iterates 64

times to generate 64 different round keys, each of

them with a length of 256 bits, and this is considered

to be one of the main advantages of our proposed

algorithm.

Algorithm 3. Proposed KE-DMM3DLMPS

Algorithm

Input: Master Secret Key (𝑴𝑺𝑲), 𝑺𝑺𝑻, 𝑺𝑶𝑻, and

𝑨𝑨𝑩𝑬𝑹

Output: 𝐾𝐴 // Keys Array, which stores multiple

round keys

Step1. 𝑆𝐾𝑠𝑡 = 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑘𝑒𝑦𝑠 (𝑴𝑺𝑲)

Step2. 𝐴𝑐𝑡𝑣𝑠𝑡 = 𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑠𝑡𝑎𝑡𝑒

Step3. 𝐴𝑐𝑡𝑣𝑎𝑎 = 𝑆𝐾𝑠𝑡{𝐴𝑐𝑡𝑣𝑠𝑡} (1)

Step4.

for 𝑖𝑟𝑜𝑢𝑛𝑑𝑠 from 1 to length (𝑴𝑺𝑲) do

 𝑿𝒌 = 𝐴𝑚𝑖𝑛𝑜_𝐴𝑐𝑖𝑑𝑋𝑂𝑅𝑖𝑛𝑔 (𝐴𝑐𝑡𝑣𝑎𝑎 , 𝑆𝐾𝑠𝑡{𝐴𝑐𝑡𝑣𝑠𝑡})

 𝑹𝒌 = 𝐴𝑚𝑖𝑛𝑜_𝐴𝑐𝑖𝑑𝐿𝑆𝑅 (𝑋𝑘 , 𝐴𝑐𝑡𝑣𝑠𝑡)

 𝑺𝑲𝒔𝒕{𝐴𝑐𝑡𝑣𝑠𝑡} = 𝑅𝑘 // Update the secret key

 𝑲𝑨 {𝑖𝑟𝑜𝑢𝑛𝑑𝑠 } = 𝑆𝐾𝑠𝑡{𝐴𝑐𝑡𝑣𝑠𝑡}// Store the keys

 If (𝑖𝑟𝑜𝑢𝑛𝑑𝑠 + 1) <= length (𝑀𝑆𝐾)

 𝑁𝑥𝑡𝑎𝑎 = 𝑆𝐾𝑠𝑡{𝐴𝑐𝑡𝑣𝑠𝑡} (𝑖𝑟𝑜𝑢𝑛𝑑𝑠 + 1)

 [𝑂𝑎𝑎 , 𝑁𝑠𝑡] = 𝑀𝑀 (𝑆𝑆𝑇, 𝑆𝑂𝑇, 𝑁𝑥𝑡𝑎𝑎 , 𝐴𝑐𝑡𝑣𝑠𝑡)

 𝐴𝑐𝑡𝑣𝑎𝑎 = 𝑂𝑎𝑎

 𝐴𝑐𝑡𝑣𝑠𝑡 = 𝑁𝑠𝑡

 else

 break

 end if

end 𝑖𝑟𝑜𝑢𝑛𝑑𝑠

To illustrate the process of key expansion step by

step, we will take the following example: Given the

master secret key (MSK), SST, SOT, and AABER as

Table 5.

Received: February 8, 2024. Revised: March 1, 2024. 180

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.15

• MSK = ‘KRMATY’ (24 bits)

• SST, and SOT: the same in Table 6 and 7,

respectively

Step 1: States 1 to 20 have a copy of the secret key:

MSK = ‘KRMATY’.

Step 2: 𝐴𝑐𝑡𝑣𝑠𝑡 = 8.

Step 3: 𝐴𝑐𝑡𝑣𝑎𝑎 = ‘K’.

Step 4:

Round 1:

• 𝑋𝑘 = (‘KKKKKK’ XOR ‘KRMATY’) =

‘CWSHHI’

• 𝑅𝑘 = ‘HICWSH’

• 𝑆𝐾𝑠𝑡{8} = ‘HICWSH’ // Update the secret key

• 𝐾𝐴 {1} = ‘HICWSH’ // Store the key in the

array

• 𝑁𝑥𝑡𝑎𝑎 = ‘ I ‘

• [‘Q’, 8] = MM (SST, SOT, ‘I’, 8)

• 𝐴𝑐𝑡𝑣𝑎𝑎 = ‘Q’

• 𝐴𝑐𝑡𝑣𝑠𝑡 = 8

Round 2:

• 𝑋𝑘 = (‘QQQQQQ’ XOR ‘HICWSH’) =

‘YAQLGY’

• 𝑅𝑘 = ‘GYYAQL’

• 𝑆𝐾𝑠𝑡{8} = ‘GYYAQL’

• 𝐾𝐴 {2} = ‘GYYAQL’

• 𝑁𝑥𝑡𝑎𝑎 = ‘Y’

• [‘T’,14] = MM (SST, SOT, ‘Y’, 8)

• 𝐴𝑐𝑡𝑣𝑎𝑎 = ‘T’

• 𝐴𝑐𝑡𝑣𝑠𝑡 = 14

Round 3:

• 𝑋𝑘 = (‘TTTTTT’ XOR ‘KRMATY’) =

‘HMRCCN’

• 𝑅𝑘 = ‘RCCNHM’

• 𝑆𝐾𝑠𝑡 {14} = ‘RCCNHM’

• 𝐾𝐴 {3} = ‘RCCNHM’

• 𝑁𝑥𝑡𝑎𝑎 = ‘N’

• [‘F’,17] = MM (SST, SOT, ‘N’, 14)

• 𝐴𝑐𝑡𝑣𝑎𝑎 = ‘F’

• 𝐴𝑐𝑡𝑣𝑠𝑡 = 17

Round 4:

• 𝑋𝑘 = (‘FFFFFF’ XOR ‘KRMATY’) =

‘LQIDDS’

• 𝑅𝑘 = ‘LQIDDS’

• 𝑆𝐾𝑠𝑡{17} = ‘LQIDDS’

• 𝐾𝐴 {4} = ‘LQIDDS’

• 𝑁𝑥𝑡𝑎𝑎 = ‘D’

• [‘H’,10] = MM (SST, SOT, ‘D’, 17)

• 𝐴𝑐𝑡𝑣𝑎𝑎 = ‘H’

• 𝐴𝑐𝑡𝑣𝑠𝑡 = 10

Round 5:

• 𝑋𝑘 = (‘HHHHHH’ XOR ‘KRMATY’) =

‘ASWEKQ’

• 𝑅𝑘 = ‘ASWEKQ’

• 𝑆𝐾𝑠𝑡 {10} =‘ASWEKQ’

• 𝐾𝐴 {5} = ‘ASWEKQ’

• 𝑁𝑥𝑡𝑎𝑎 = ‘Q’

• [‘F’, 10] = MM (SST, SOT, ‘Q’, 10)

• 𝐴𝑐𝑡𝑣𝑎𝑎 = ‘F’

• 𝐴𝑐𝑡𝑣𝑠𝑡 = 10

Round 6:

• 𝑋𝑘 = (‘FFFFFF’ XOR ‘ ASWEKQ’) =

‘DYNLLR’

• 𝑅𝑘 = ‘NLLRDY’

• 𝑆𝐾𝑠𝑡 {10} = ‘NLLRDY’

• 𝐾𝐴 {6} = ‘NLLRDY’

Therefore, the six round keys that are generated

from the proposed key expansion algorithm are: 𝐾𝐴

= {‘HICWSH’, ‘GYYAQL’, ‘RCCNHM’,

‘LQIDDS’, ‘ASWEKQ’, ‘NLLRDY’}. The larger

the master secret key, the more round keys there are,

and the greater the complexity between those round

keys.

4. Assessment of experimental results for the

suggested method

The suggested KE-DMM3DLMPS algorithm is

tested in this section using Flexibility, the NIST

Statistical Test Suite, Histogram Analysis, Key Space

Analysis, Correlation Coefficient, Hamming

Distance, Number of Bit Change Rate, Initial Key

Sensitivity, Confusion and Diffusion, and

Differential Attack. The aim of this test is to

demonstrate the strength and security of the proposed

key expansion algorithm.

4.1 Flexibility

The proposed KE-DMM3DLMPS algorithm is

highly flexible: (1) it can produce keys of different

lengths that are divisible by 8, such as 8, 16, 24, ...,

128, 136, ..., 1024 bits, or longer as desired by the

user. (2) According to point (1), it can generate a

different number of round keys by specifying the

input size for the master secret key as described in

Table 8. The user can also specify the number of sub-

keys he needs for encryption.

4.2 NIST SP 800-22 test suite

The National Institute of Standards and

Technology [37] proposed the NIST SP 800-22 test

suite as a standard test to measure the randomness of

key expansion algorithms and any cryptographic

system associated with random numbers. It consists

of several tests to discover the different properties of

Received: February 8, 2024. Revised: March 1, 2024. 181

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.15

Table 8. The relationship between the key

size and the number of rounds
Key Length Number of rounds

64-bit 16

128-bit 32

256-bit 64

512-bit 128

1024-bit 256

Table 9. NIST test suite results of the proposed

KE-DMM3DLMPS algorithm

Statistical Test P-value Result

Frequency 0.875291 Pass

Block Frequency 0.654822 Pass

Cumulative Sums 0.804396 Pass

Runs 0.447751 Pass

Longest Runs of Ones 0.571849 Pass

Rank 0.436898 Pass

Spectral DFT 0.483807 Pass

Non-Overlapping Templates 0.460300 Pass

Overlapping Templates 0.999988 Pass

Universal 0.996711 Pass

Approximate Entropy 0.753984 Pass

Random Excursions 0.341179 Pass

Random Excursions Variant 0.675457 Pass

Serial 0.595208 Pass

Linear Complexity 0.861094 Pass

random sequences. Some of the NIST test suite

should be applied to sequences of length greater than

or equal to one million bits. For small sequences, the

NIST test suite gives misleading results. In order to

obtain enough bits to perform all the NIST test suite

properly, a master secret key with a length of 256 bits

(64 amino acids) is used, and then the proposed KE-

DMM3DLMPS algorithm is repeated 150 times to

generate 9601 rounds with a total length of 2457856

bits.

The obtained round keys must be converted into

binary form using Table 5, and these binary

sequences are considered input to the NIST test suite,

which consists of 15 tests. Each test has a p-value that

compares with a fixed level of significance (𝜎),

where the value of the 𝜎 is to be at least 0.01. If the

p-value obtained from each test is greater than 𝜎, then

the test is successful; otherwise, the test is a failure.

That is, the p-value reflects the result of the test. A

larger p-value indicates a higher level of randomness

in the tested sequence. Based on the results obtained

and shown in Table 9 , the proposed KE -

Figure. 4 Histogram of Amino Acid for 160 Bits

DMM3DLMPS algorithm passed all tests

successfully with no obvious statistical defects.

Which means that the generated round keys are very

random and complex.

4.3 Histogram analysis (Statistical attacks)

The histogram is a graphical representation that

illustrates the frequency distribution of the amino

acids for several round keys in the propoesd

algorithm. The uniform distribution of amino acids

for several round keys makes the algorithm resistant

to statistical attacks, making it very difficult for an

attacker to know any information about the secret key.

The high frequency of some amino acids leads to the

disclosure of information. So, as a good proposed key

expansion system, the histogram of amino acids

should be evenly distributed. In this study, a

histogram of the round keys is displayed by counting

the number of each amino acid (count 𝑎𝑎), where the

optimal value for each amino acid is calculated as

shown in Eq. (11).

𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑣𝑎𝑙𝑢𝑒 = 𝐿𝑆𝐾 ×
𝑁𝑜.𝑅𝑜𝑢𝑛𝑑𝑠

20
 (11)

Where 𝐿𝑆𝐾 is the number of amino acids in the

secret key and 𝑁𝑜.𝑅𝑜𝑢𝑛𝑑𝑠 is the number of generated

rounds.

We take a master secret key with a length of 160

bits (i.e., 40 amino acids), as follows: key =

‘TGQWISAHVCTYEGRYLKNDMEHRNCFVPK

AFMLPIDQWS’. The optimal value for this key

should be 80 to ensure a uniform distribution of

amino acids for 40 rounds. Fig. 4 displays a

histogram of the amino acids in the above-mentioned

secret key for 40 rounds; therefore, we conclude from

this figure that each amino acid has an average

count 𝑎𝑎 equal to 80, which indicates that the amino

acids of the round keys are completely evenly

Received: February 8, 2024. Revised: March 1, 2024. 182

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.15

Figure. 5 Correlation coefficient for 128 round keys (256-

bits secret key)

distributed, and therefore the proposed KE-

DMM3DLMPS algorithm is efficiently resistant to

statistical analysis attacks.

4.4 Key space analysis

From the cryptanalysis point of view, the key

space should be greater than 2100 in order to render

brute-force attacks futile [27]. The key space of the

suggested KE-DMM3DLMPS algorithm includes:

(1) the initial values of the state variables (𝑥0, 𝑦0, and

𝑧0) and the control parameters (𝛼, 𝛽, and 𝜎) of the 3D

logistic map that is used to generate the output and

the state tables. When the computer’s precision is

about 10−15, then the key space of the initial values

is (1015)6 = 1090 ≈ 2299 . (2) the amino acid

binary encoding rules, where there are, in total, 16! ≈
244 different rule to map the four bits to the amino

acids. (3) the master secret key, which is considered

an input to the Mealy machine, is in the form of a

protein sequence and of different sizes according to

the user’s desire. Assuming that the length of the

master secret key is 128 bits, the key space of the

master secret key is 2128. (4) the starting state of the

mealy machine, because there are 20 states, so the

key space is 20. Thus, the proposed key expansion

method has a key space of a total of 20 × 2471 ,

indicating a significant level of security against brute

force assaults.

4.5 Correlation coefficient assessment

The correlation coefficient is a statistical metric

that exhibits the linear relationship between the

master secret key and the generated round keys. Thus,

an important feature of the key expansion algorithm

is to break this linear relationship and make the

algorithm resist all kinds of statistical attacks. If the

coefficient value is 0 or near zero, there is no linear

relationship between the master secret key and the

generated round key. To check the KE-

DMM3DLMPS algorithm’s correlation coefficient,

we use a 256-bit master secret key, shown below, and

iterate KE-DMM3DLMPS twice to generate 128

round keys. We then change these keys from protein

sequences to binary sequences.

Key =

‘EKELKIFFAEVKTRTYLGTLIKSTDKDLLVLS

DPSIKEMEEIVVIGAAKAKGDHDWVDIDLYDD

’

The correlation coefficient (CC) between the

master secret key and each round key can be

calculated through Eqs. (12)-(15):

𝑀 (𝑥) =
1

𝐿𝐾
 ∑ 𝑥𝑗

𝐿𝐾
𝑗=1 (12)

𝑉 (𝑥) =
1

𝐿𝐾
 ∑ (𝑥𝑗 − 𝑀 (𝑥))2𝐿𝐾

𝑗=1 (13)

𝐶(𝑥, 𝑦) =
1

𝐿𝐾
 ∑ ((𝑥𝑗 − 𝑀 (𝑥))𝐿𝐾

𝑗=1 × (𝑦𝑗 − 𝑀 (𝑦)))

 (14)

𝐶𝐶𝑥𝑦 =
𝐶 (𝑥,𝑦)

√𝑉(𝑥) × √𝑉(𝑦)
 , −1 ≤ 𝐶𝐶𝑥𝑦 ≤ 1 (15)

where 𝑥 and 𝑦 are the binary bits of the master secret

key and each round key, respectively; 𝑀 (𝑥) is the

mean; 𝑉 (𝑥) is the variance; 𝐶(𝑥, 𝑦) is the

covariance; and 𝐿𝐾 is the length of the secret key in

bits.

From the correlation coefficient results in Fig. 5,

we find there is no correlation between the master

secret key and the generated round keys because all

values of the correlation coefficients are near zero.

4.6 Hamming distance (HD)

Table 10 lists the generated round keys of the

proposed KE-DMM3DLMPS algorithm and their

hamming distances to the master secret key (MSK)

with a size of 128 bits, concluding that the HD for

each round key and the average hamming distances

(AHDs) of all round keys are close to the optimal

value. To further assess the effectiveness of the

suggested key expansion technique, we produced

3,840 round keys with lengths of 128-bit, 256-bit,

512-bit, and 1024-bit. The AHDs between each

master secret key and its corresponding round keys,

as displayed in Table 11, indicate that the AHDs

closely approximate the optimal values of 64, 128,

256, and 512. Therefore, we could deduce that the

suggested key expansion method meets the principle

of irreversibility, i.e., no sub-key can deduce the

master secret key.

Received: February 8, 2024. Revised: March 1, 2024. 183

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.15

Table 10. The 128-bit round keys and their hamming distance

Round MSK and Round Keys HD NBCR

MSK 'AMLRFWGQVSCQLIFRESLWPHNFQCGHMYRC'

1 'PTQRMVQHALWCMHPENFLQVTNISWVYIHWL' 72 56.2500

2 'GNCQKWGRFTICEYLTHPQYSHGQCRLEDWYE' 53 41.4063

3 'CVASMQIYHVMLPERISAFEDTYANDMYILFS' 66 51.5625

4 'DGLKSHPILQAVNSGDYVTWHDMTLHSQYGEI' 67 52.3438

5 'WKNAFYMKVFIMTSNWPDKWIGTMLDISQAET' 63 49.2188

6 'ICGDWVLRSHEVTYFHPTGFRDESQCHSGNRF' 59 46.0938

7 'IRTHAQTVSDNMAVILPCDTQRPKFNQEKVND' 66 51.5625

8 'WLQTSGKDVWCFMDYHLFIYSLWGMCATFCSR' 68 53.1250

9 'LYDCTMYHCWSNGPETGHAWCKEHSVLQWGTN' 65 50.7813

10 'DALPRYTAQRNTMCLDWKADNEMTGKNCSPIM' 60 46.8750

11 'GMWLCGPESAFHMACVPGRHCENYTPAMSYLQ' 62 48.4375

12 'SFTWGKAYHRVKNMIRDNTIYWVHQFRHTCYI' 56 43.7500

13 'HCGVIPKCADFPRANFVMKIWEPINLVFYENM' 57 44.5313

14 'FVYTMHDLGNELYPMTWNYHCRKMLEDRVITE' 58 45.3125

15 'FQVRTFLVIGWYPKRYLCIVAKLGMENIYRWE' 62 48.4375

16 'GYDWFVIKDTSQPFYGEQRNVGARDVFTEYLK' 63 49.2188

17 'FRGVWATLMYHLGNWVDYGACPKWLHTPRSVH' 62 48.4375

18 'MLSNTMWSHCIPKYNPWEHSGYWCRFDHPNIF' 57 44.5313

19 'WRHTSGMYFINWFTLGSCNTMPEAGFWYEHDS' 70 54.6875

20 'DQWIRQNYHPVINECFLHQRDFAMPRSANPHE' 66 51.5625

21 'ANCIPAECMWQKHYIKERMCFYEWVLDMKIQL' 65 50.7813

22 'YPLDEIARNPEVMHWADLGHQKRLCQERAVGD' 62 48.4375

23 'MNYKPGMTFEPWTLEYQGKVRPKLIYEARLQC' 60 46.8750

24 'VLHNQWKLYIEWMYFENCKQPAWQFSNERAFC' 66 51.5625

25 'INDMENHTFLWMHCKYSFNEIYVPLEAVHLFC' 64 50

26 'KGMWSDKRPHTMNCQHFEWCVFKWMRQNADCN' 75 58.5938

27 'CVIQMYRVWMERFKICSHVCELFRNHEKDQGF' 66 51.5625

28 'FHNDTRFYWGQNMCAGEVDCKEFDNYAMSRCM' 70 54.6875

29 'ADQFAGNPKSQGEYHIPAFLHMCKFRMGKPEL' 66 51.5625

30 'PRKENQVTCHVRMEKFCRNYWSEVHQWPAKHG' 76 59.3750

31 'NWPSCEAWQCKARFPNIGWNKYRADGKFTSLR' 69 53.9063

32 'FVGQEYPQLMFCWYLVRHNFQPGHSACPISLC' 52 40.6250

Average 63.84 49.8779

Table 11. The average hamming distances and NBCRs of

3840 round keys

Length of MSK
Average

HDs

Average

NBCRs (%)

128-bit 63.9789 49.9591

256-bit 128.0799 50.0312

512-bit 255.9901 49.9981

1024-bit 512.1607 50.0157

4.7 The number of bit change rate (NBCR)

The number of bit change rate can be used to

measure how sensitive the initial key is to the key

expansion algorithm [38]. The NBCR of two

sequences of keys, K1 and K2, can be determined

using Eq. (16):

NBCR =
HD (K1,K2)

Len
 × 100 % (16)

where Len is the length of K1 or K2, and HD (K1,

K2) calculates the Hamming distance between K1

and K2. The optimal NBCR value is 50%, which can

be obtained when two keys are fully independent.

Tables 10 and 11 reveal that all of the average

NBCRs between the round keys and the master secret

key are near the optimal value of 50%. This

demonstrates the independence between the master

secret key and the round keys.

Received: February 8, 2024. Revised: March 1, 2024. 184

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.15

Figure. 6 Key Sensitivity Analysis of KE-DMM3DLMPS

Table 12. The Results of the Initial Key Sensitivity

Length of

MSK

Average

HDs

Average

NBCRs (%)

128-bit 64.1464 50.1144

256-bit 128.1120 50.0438

512-bit 255.9828 49.9966

1024-bit 512.1748 50.0171

4.8 Sensitivity of the initial key

The most important feature of any secure key

expansion algorithm is key sensitivity, as it requires

high sensitivity of the secret key. This means that a

very small change between the two master secret keys

can cause a significant difference between their two

round keys.

To test the key sensitivity of the proposed KE-

DMM3DLMPS algorithm, a master secret key with a

length of 256 bits is determined, and then one bit is

randomly chosen from this key and changed for the

purpose of creating two master secret keys that differ

in only one bit, as follows, where the change in bit is

in blue color (M = 1000, Q = 1001):

Key1 =

VLNQYQNKSAPHAMTSRCERVRDHWFMGYC

GSMYMWTDKWNATFEQTCKIGHPIDFIGPEL

VAC

Key2 =

VLNQYQNKSAPHAMTSRCERVRDHWFMGYC

GSMYQWTDKWNATFEQTCKIGHPIDFIGPELV

AC
After that, each of the two master secret keys

above is entered into the KE-DMM3DLMPS

algorithm in order to obtain their respective round

keys. To calculate the difference between the round

keys generated for each of the two keys above, we

calculate the difference (pairwise distance) between

the amino acids for each sub-key pair

(𝑠𝑢𝑏𝑘𝑒𝑦𝑖 (𝑘𝑒𝑦1) and 𝑠𝑢𝑏𝑘𝑒𝑦𝑖 (𝑘𝑒𝑦2)). If the amino

acids are completely different, then the difference

value (Ω) is equal to one, and if they are similar, then

the Ω value is equal to zero. After calculating the

differences between all sub-key pairs of the two keys

above for 64 round keys, it was found that the average

of all Ω values is equal to 0.9514. This value is close

to one, which indicates high sensitivity to changing

one bit of the master secret key. We conducted the

experiment 64 times, utilizing various pairs of master

secret keys, and Fig. 6 displays the results. We

conclude that the proposed method is highly sensitive

because all values are close to one.

To further evaluate the initial key sensitivity of

the proposed algorithm, we change one bit from the

128-bit, 256-bit, 512-bit, and 1024-bit master secret

keys (𝑀𝑆𝐾𝑖) to obtain four new master secret keys

(𝑀𝑆𝐾𝑖
⸍), and generate 3840 round keys for each of

them (𝑀𝑆𝐾𝑖 and 𝑀𝑆𝐾𝑖
⸍), then calculate the

Hamming distance and the NBCR between each pair

of round keys (i.e., between 𝑟𝑜𝑢𝑛𝑑𝒋
128 and

𝑟𝑜𝑢𝑛𝑑𝒋
128Ꞌ and so on). From what is shown in Table

12, we can deduce that the average NBCRs and HDs

are getting closer to their optimal values. This implies

that a change of one bit from the master secret key

yields good results and that the suggested algorithm

is very sensitive to the master secret key, satisfying

the strict avalanche effect (SAC).

4.9 Analysis of confusion and diffusion

Confusion and diffusion are two significant

evaluation criteria in the key expansion algorithm.

Confusion aims to make the relationship between the

master secret key and the round keys as complicated

as possible, while diffusion ensures that even a slight

change in the master secret key will have a

widespread effect on all bits of the round key [7].

A perfect outcome is that a single-bit change in

the master secret key will lead to a 50% alteration in

the bits of the round key [38]. In this context, a

specific master secret key(𝑀𝑆𝐾) is chosen, and then

only one bit of that key is changed to obtain a new

master secret key (𝑀𝑆𝐾⸍) with a difference of only

one bit, and we generate 3840 round keys for each.

Each round key generated from the 𝑀𝑆𝐾 is then

compared with the corresponding round key

generated from the 𝑀𝑆𝐾⸍ bit by bit to obtain the

number of flipped bits (NFB). From Fig. 7, it is

apparent that the NFBs are centered around 64, 128,

256, and 512 bits. This suggests that the proposed key

expansion technique is very sensitive to confusion

and diffusion.

Received: February 8, 2024. Revised: March 1, 2024. 185

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.15

(a)

(b)

(c)

(d)

Figure. 7 Number of different bits distribution: (a)128-bit master secret key, (b)256-bit master secret key, (c)512-bit

master secret key, and (d)1024-bit master secret key

Table 13. Comparison of the NIST test suite results

Statistical Test
P-value in

this research

P-value in

Ref. [12]
P-value in

Ref. [13]

P-value in

Ref. [14]

P-value in

Ref. [17]

Frequency 0.875291 0.382115 0.576150 0.739918 0.7542

Block Frequency 0.654822 0.082010 0.859684 0.179120 0.6523

Cumulative Sums 0.804396 0.650549 0.586368 0.534146 0.8564

Runs 0.447751 0.197981 0.695002 0.350485 0.3265

Longest Runs of Ones 0.571849 0.498313 0.296950 0.179120 0.1542

Rank 0.436898 0.363593 0.693720 0.035174 0.6589

Spectral DFT 0.483807 0.015816 0.123812 0.213309 0.5421

Non-Overlapping Templates 0.460300 0.163643 Not defined 0.122325 0.3265

Overlapping Templates 0.999988 0.060112 Not defined 0.430102 0.6953

Universal 0.996711 0.401192 Not defined 0.122325 0.4526

Approximate Entropy 0.753984 0.076131 1.000000 0.350485 0.3574

Random Excursions 0.341179 0.095397 Not defined 0.911413 0.1594

Random Excursions Variant 0.675457 0.524892 Not defined 0.534146 0.6532

Serial 0.595208 0.843974 0.498531 0.035174 0.3254

Linear Complexity 0.861094 0.001046 0.919689 0.739918 0.9658

4.10 Differential attack analysis

Differential attacks are concerned with attacking

the master secret key, where attackers try to find out

whether a particular modification to the master key

might lead to a specific difference in the key output

of each round [12]. As demonstrated in Sections 4.7

and 4.8 through experimentation, a 1-bit change to

the master secret key will get NBCR very close to the

optimal value of 50%. Hence, we can deduce that our

suggested technique is capable of effectively

blocking differential attacks.

Received: February 8, 2024. Revised: March 1, 2024. 186

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.15

Table 14. Comparison of the key space

Research
Initial

 key size
key space

Ref. [13] 128-bits 2128

Ref. [14] 64-bit 216

Ref. [15] 128-bits 2128

Ref. [16] 128-bits 264

Ref. [17] 128-bits 2128

Ref. [18] 128-bits 2128 × 1045

KE-DMM3DLMPS 128-bits 20 × 2471

5. Comparison results

After evaluating the performance of the proposed

KE-DMM3DLMPS algorithm through several

different tests and proving the strength and security

of our proposed algorithm, in this section an

evaluation between KE-DMM3DLMPS and some

other key expansion algorithms is presented. The

comparison is based on the NIST test suite, histogram

analysis, and key space analysis. Table 13 shows the

NIST test suite results of the compared key expansion

algorithms. The KE-DMM3DLMPS passed all tests

successfully and with almost the best p-values

compared to the results of the previous studies that

were evaluated with the NIST test suite. The KE-

DMM3DLMPS achieved a higher P-value, which

means that the generated round keys are very random.

Furthermore, no one of the previous studies used

histogram analysis except Ref. [17], but the result is

not in an ideal uniform distribution in spite of the fact

that it used DNA sequences while the proposed KE-

DMM3DLMPS algorithm depended on protein

sequences. As displayed previously in Fig. 4, the

amino acids of the round keys are completely evenly

distributed, thus the histogram of the proposed KE-

DMM3DLMPS algorithm is in an ideal uniform

distribution. This ensures strict resistance against

statistical analysis attacks.

Finally, Table 14 shows the comparison of the

proposed KE-DMM3DLMPS algorithm and the

previous studies based on the key space, indicating

that the suggested algorithm has a larger key space

and a significant level of security against brute force

assaults.

6. Conclusions

A novel and secure key expansion method was

proposed based on Dynamic Mealy Machine, 3D

Logistic Map, and Protein Sequence. The proposed

KE-DMM3DLMPS algorithm was introduced to

solve the problem of sub-key randomness and some

related key attacks. Through the results of analysis

and comparisons of the proposed method with some

related studies for the purpose of evaluating the

performance of the proposed method, we can

conclude the following points:

• The ability of KE-DMM3DLMPS to generate a

different number of round keys with the desired

lengths.

• The generated round keys have a higher degree

of randomness by passing all of the NIST tests.

• A uniform and ideal distribution of the amino

acids present in each round key, which ensures

strict resistance against statistical analysis

attacks.

• A higher key space of up to 20 × 2471,

indicating a significant level of security against

brute force assaults.

• The ability of KE-DMM3DLMPS to break the

linear relationship between the master secret

key and the generated round keys is evidenced

by the fact that all correlation coefficients

exhibit values in close proximity to zero.

• The KE-DMM3DLMPS satisfies irreversibility

and independence by having ideal values of

average hamming distances and NBCRs,

respectively.

• The proposed key expansion algorithm also

manages to maintain its sensitivity to a one-bit

change in the master secret key at 95 percent,

satisfying the strict avalanche effect (SAC).

• The KE-DMM3DLMPS ensures Confusion and

Diffusion.

• It is capable of effectively blocking differential

attacks.

Conflicts of Interest

The authors assert that they have no conflict of

interest.

Author Contributions

Radhwan Jawad Kadhim made significant

contributions to the conceptualization, methodology,

program development, formal analysis, validation,

resource management, data curation, and original

draft preparation. Hussein K. Khafaji Provided

oversight, reviewed, and made corrections to the

work.

References

[1] M. Agrawal and P. Mishra, “A comparative

survey on symmetric key encryption

techniques”, Intern. J. Comput. Sci. Eng., Vol. 4,

No. 5, pp. 877-882, 2012.

[2] M. Chakraborty and M. Singh, Introduction to

Received: February 8, 2024. Revised: March 1, 2024. 187

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.15

Network Security Technologies. The” Essence”

of Network Security: An End-to-End Panorama,

2021. doi: 10.1007/978-981-15-9317-8_1.

[3] S. Jamel, T. Herawan, and M. M. Deris, “A

cryptographic algorithm based on hybrid cubes”,

Lect. Notes Comput. Sci. (including Subser. Lect.

Notes Artif. Intell. Lect. Notes Bioinformatics),

Vol. 6019 LNCS, No. PART 4, pp. 175-187,

2010, doi: 10.1007/978-3-642-12189-0_16.

[4] M. Stamp, Information Security: Principles and

Practice. John Wiley & Sons, 2011.

[5] L. R. Knudsen and M. Robshaw, The block

cipher companion, Springer Science & Business

Media, 2011.

[6] J. N. B. Salameh, “A new technique for sub-key

generation in block ciphers”, World Appl. Sci. J.,

Vol. 19, No. 11, pp. 1630-1639, 2012, doi:

10.5829/idosi.wasj.2012.19.11.1871.

[7] S. Afzal, M. Yousaf, H. Afzal, N. Alharbe, and

M. R. Mufti, “Cryptographic Strength

Evaluation of Key Schedule Algorithms”, Secur.

Commun. Networks, Vol. 2020, 2020, doi:

10.1155/2020/3189601.

[8] G. T. Cayabyab, A. M. Sison, and R. P. Medina,

“A secure key scheduling operation for

international data encryption algorithm using

serpent key schedule operation”, ACM Int. Conf.

Proceeding Ser., No. 2021, pp. 63-67, 2019, doi:

10.1145/3366650.3366659.

[9] M. Al-Muhammed, “A novel key expansion

technique using diffusion”, Comput. Fraud

Secur., Vol. 2018, No. 3, pp. 12-20, 2018, doi:

10.1016/S1361-3723(18)30025-3.

[10] I. Sultan, M. Y. Lone, M. Nazish, and M. T.

Banday, “A Secure Key Expansion Algorithm

for Present”, IEEE Sens. J., Vol. 23, No. 20, pp.

25367-25376, 2023, doi:

10.1109/JSEN.2023.3267386.

[11] A. Dmukh, D. Trifonov, and A. Chookhno,

“Modification of the key schedule of the 2-

GOST block cipher and its implementation on

FPGA”, J. Comput. Virol. Hacking Tech., Vol.

18, No. 1, pp. 49-59, 2022, doi:

10.1007/s11416-021-00406-x.

[12] Y. Harmouch and R. El Kouch, “The benefit of

using chaos in key schedule algorithm”, J. Inf.

Secur. Appl., Vol. 45, pp. 143-155, 2019, doi:

10.1016/j.jisa.2019.02.001.

[13] J. Wang, B. W. Pan, Q. R. Wang, and Q. Ding,

“A chaotic key expansion algorithm based on

genetic algorithm”, J. Inf. Hiding Multimed.

Signal Process., Vol. 10, No. 2, pp. 289-299,

2019.

[14] A. Poojari and H. R. Nagesh, “FPGA

implementation of random number generator

using LFSR and scrambling algorithm for

lightweight cryptography”, Int. J. Appl. Sci.

Eng., Vol. 18, No. 6, pp. 1-9, 2021, doi:

10.6703/IJASE.202112_18(6).001.

[15] A. A. Zakaria, A. H. Azni, F. Ridzuan, N. H.

Zakaria, and M. Daud, Modifications of Key

Schedule Algorithm on RECTANGLE Block

Cipher, Vol. 1347. Springer Singapore, 2021.

doi: 10.1007/978-981-33-6835-4_13.

[16] S. G. Garba, A. A. Obiniyi, M. A. Ibrahim, and

B. I. E. Ahmad, “On the Key Schedule of

Lightweight Block Cipher”, In: Proc. of 5th Int.

Conf. Inf. Technol. Educ. Dev. Chang. Narrat.

Through Build. a Secur. Soc. with Disruptive

Technol. ITED 2022, pp. 1-6, 2022, doi:

10.1109/ITED56637.2022.10051257.

[17] M. Alawida, J. Sen Teh, and W. H. Alshoura, “A

New Image Encryption Algorithm Based on

DNA State Machine for UAV Data Encryption”,

Drones, Vol. 7, No. 1, 2023, doi:

10.3390/drones7010038.

[18] D. Xu and H. Liu, “A Strong Key Expansion

Algorithm Based on Nondegenerate 2D Chaotic

Map Over GF(2n)”, Int. J. Bifurc. Chaos, Vol.

33, No. 15, 2023, doi:

10.1142/S0218127423501778.

[19] R. Jiang, X. Zhang, and M. Q. Zhang, Basics of

bioinformatics: Lecture notes of the graduate

summer school on bioinformatics of China, Vol.

9783642389. 2013. doi: 10.1007/978-3-642-

38951-1.

[20] B. Alberts, Molecular biology of the cell, WW

Norton & Company, 2017.

[21] E. Keedwell and A. Narayanan, “Intelligent

Bioinformatics: The Application of Artificial

Intelligence Techniques to Bioinformatics

Problems”, Intell. Bioinforma. Appl. Artif. Intell.

Tech. to Bioinforma. Probl., pp. 1-280, 2005,

doi: 10.1002/0470015721.

[22] J. Pevsner, Bioinformatics and Functional

Genomics, John Wiley & Sons, 2005. doi:

10.1002/047145916x.

[23] M. Morange, “The Central Dogma of molecular

biology”, Resonance, Vol. 14, No. 3, pp. 236-

247, 2009, doi: 10.1007/s12045-009-0024-6.

[24] G. Edited, I. C. Gray, and M. R. Barnes,

Bioinformatics for geneticists, John Wiley &

Sons, 2003.

[25] P. N. Lone, D. singh, and U. H. Mir, “Image

encryption using DNA coding and three-

dimensional chaotic systems”, Multimed. Tools

Appl., Vol. 81, No. 4, pp. 5669-5693, 2022, doi:

10.1007/s11042-021-11802-2.

[26] C. Liu and Q. Ding, “A Color Image Encryption

Scheme Based on a Novel 3D Chaotic

Received: February 8, 2024. Revised: March 1, 2024. 188

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024 DOI: 10.22266/ijies2024.0630.15

Mapping”, Complexity, Vol. 2020, 2020, doi:

10.1155/2020/3837209.

[27] X. Chai, Z. Gan, K. Yuan, Y. Chen, and X. Liu,

“A novel image encryption scheme based on

DNA sequence operations and chaotic systems”,

Neural Comput. Appl., Vol. 31, No. 1, pp. 219-

237, 2019, doi: 10.1007/s00521-017-2993-9.

[28] K. Singh and K. Kaur, “Image Encryption using

Chaotic Maps and DNA Addition Operation and

Noise Effects on it”, Int. J. Comput. Appl., Vol.

23, No. 6, pp. 17-24, 2011, doi: 10.5120/2892-

3779.

[29] S. Patel, Bharath K P, and Rajesh Kumar M,

“Symmetric keys image encryption and

decryption using 3D chaotic maps with DNA

encoding technique”, Multimed. Tools Appl.,

Vol. 79, No. 43-44, pp. 31739-31757, 2020, doi:

10.1007/s11042-020-09551-9.

[30] P. N. Khade and P. M. Narnaware, “3D Chaotic

Functions for Image Encryption”, Int. J. Comput.

Sci. Issues (IJCSI), Vol. 9, No. 3, pp. 323-328,

2012.

[31] P. Garapati and S. Musala, “Moore and Mealy

Negative Edge detector A VHDL Example for

Finite State Machine”, In: Proc. of 2020 IEEE

Int. Conf. Commun. Signal Process. ICCSP

2020, pp. 1159-1161, 2020, doi:

10.1109/ICCSP48568.2020.9182310.

[32] A. Bhowmik, S. Karforma, and J. Dey,

“Symmetric key and artificial neural network

with mealy machine: A neoteric model of

cryptosystem for cloud security”, Mach. Learn.

Tech. Anal. Cloud Secur., pp. 81-101, 2021, doi:

10.1002/9781119764113.ch5.

[33] B. B. Kodada and D. A. D’Mello, “Symmetric

Key Cryptosystem based on Sequential State

Machine”, IOP Conf. Ser. Mater. Sci. Eng., Vol.

1187, No. 1, p. 012026, 2021, doi:

10.1088/1757-899x/1187/1/012026.

[34] P. Pavithran, S. Mathew, S. Namasudra, and P.

Lorenz, “A novel cryptosystem based on DNA

cryptography and randomly generated mealy

machine”, Comput. Secur., Vol. 104, p. 102160,

2021, doi: 10.1016/j.cose.2020.102160.

[35] P. Pavithran, S. Mathew, S. Namasudra, and A.

Singh, “Enhancing randomness of the ciphertext

generated by DNA-based cryptosystem and

finite state machine”, Cluster Comput., Vol. 26,

No. 2, pp. 1035-1051, 2023, doi:

10.1007/s10586-022-03653-9.

[36] R. J. Kadhim and H. K. Khafaji,

“Unprecedented Security Analysis Results for a

Novel Steganography Approach Based on

Protein Sequences”, Int. J. Intell. Eng. Syst., Vol.

16, No. 2, pp. 464-476, 2023, doi:

10.22266/ijies2023.0430.37.

[37] A. Rukhin, J. Soto, and J. Nechvatal, “A

Statistical Test Suite for Random and

Pseudorandom Number Generators for

Cryptographic Applications”, Nist Spec. Publ.,

Vol. 22, pp. 1/1--G/1, 2010.

[38] M. Zhao and H. Liu, “Construction of a

Nondegenerate 2D Chaotic Map with

Application to Irreversible Parallel Key

Expansion Algorithm”, Int. J. Bifurc. Chaos,

Vol. 32, No. 6, 2022, doi:

10.1142/S021812742250081X.

