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Abstract: Optimizing the energy grid management will enhance the effective and efficient use of generated energy. 

Accurate energy estimations allow power-generating firms to use dynamic energy management strategies to maintain 

stability across the smart grid. This paper presents a hybrid predictive modelling approach for forecasting the energy 

consumption of household appliances by combining 1D Convolutional Neural Networks (1D-CNN) with Bi-

Directional Long Short-Term Memory (BiLSTM). The hybrid architecture combines CNNs' spatial feature extraction 

capabilities with BiLSTMs' sequential memory retention to comprehensively understand appliance use patterns. The 

proposed model is trained and validated on a dataset of household energy consumption, demonstrating superior 

performance compared to individual CNN or BiLSTM models. By incorporating both spatial and temporal data, energy 

consumption forecasts become more accurate and adaptable, making them highly appropriate for real-time applications 

and demand-side management. Utilizing the Analysis of Variance (ANOVA) F-measure feature selection technique 

and BiLSTM with a 1D-CNN hybrid deep learning model, the Root Mean Square Error (RMSE) of 1.745 and 

Coefficient of Determination (R2 score) of 0.997. 

Keywords: ANOVA, Bi-directional long short-term memory, Convolutional neural networks, Energy forecasting, 

Hybrid model, Machine learning. 

 

 

1. Introduction 

With the world's growing population, 

urbanization, and technological advancements 

increasing, energy demand has enhanced 

exponentially. Efficient energy management at the 

household level is essential to address the broader 

issue of resource sustainability. It's also a way for 

individuals to contribute to global efforts to reduce 

carbon emissions to prevent climate change and 

environmental concerns. Integrating renewable 

energy sources with efficient energy management 

facilitates the transition to cleaner and greener energy 

alternatives. It also promotes economic stability by 

reducing utility expenses and enhancing overall 

energy stability. 

As the demand increases, predicting the energy 

consumption of household appliances at regular 

intervals helps homeowners make knowledgeable 

decisions about their energy usage patterns, leading 

to significant cost savings. It also allows for 

optimizing the energy efficiency of specific 

appliances, leading to substantial reductions in utility 

costs. Understanding weather and climate data in 

energy management models helps when and how 

specific appliances consume energy, enabling 

homeowners to adjust their usage patterns 

dynamically [1]. Usage patterns, such as load shifting, 

can help reduce electricity rates during off-peak 

hours and eventually benefit in cost-saving, 

sustainability, etc. Routine energy consumption 

predictions align with sustainability goals, enabling 

households to participate actively in global energy 

conservation [2]. 

Optimizing household energy usage involves 

multiple factors influencing total consumption 

patterns, from the house's physical characteristics to 

its occupants' behaviours. Various aspects contribute 



Received:  February 8, 2024.     Revised: March 5, 2024.                                                                                                 200 

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024           DOI: 10.22266/ijies2024.0630.17 

 

to the overall energy landscape, like the size and 

layout of a house, insulation and efficient windows 

and doors, and the number and types of appliances in 

a household. External elements such as weather and 

climate data also influence the efficiency and 

sustainability of energy utilization within a home. 

Smart home systems with Internet of Things (IoT) 

enabled sensors allow real-time monitoring and data 

collection [3]. 

Temperature, pressure, humidity, wind speed, 

visibility, and dewpoint are vital parameters that 

directly impact energy consumption. Temperature, 

for instance, directly correlates with heating and 

cooling demands. In colder climates, households may 

require more energy to maintain warmness, while 

warmer climates require increased cooling efforts [4]. 

Daily temperature fluctuations and extreme weather 

events influence a household's energy needs. Pressure 

variations affect the efficiency of gas-powered 

appliances, and humidity levels influence the 

perceived comfort and efficiency of cooling systems. 

Wind speed and visibility can impact solar panel 

efficiency, affecting the performance of renewable 

energy systems. Dewpoint, the temperature at which 

air becomes saturated and dew forms, is a crucial 

factor for understanding moisture levels in the air. 

High dewpoints can result in discomfort, potentially 

leading to increased reliance on Heating, Ventilating, 

and Air Conditioning (HVAC) system systems. 

The proposed method combines, a 1D-CNN with 

a BiLSTM to enhance energy consumption 

prediction. It involves the sequential application of 

1D-CNN followed by BiLSTM layers. The open-

source Appliances Energy Dataset, available on the 

UCI-ML Repository, is used to evaluate the 

approaches. Despite the importance of physical room 

characteristics and homeowner behaviour as factors 

influencing energy consumption, they are 

challenging to quantify numerically. The time series 

dataset used encompasses the temperature and 

relative humidity of different rooms in a house and 

various external environmental attribute around a 

house. A detailed description of the dataset is 

presented in Section 3.1.  

An essential aspect of this analysis is the 

examination of factors influencing energy usage. The 

usage of feature engineering methodologies mostly 

determines the accuracy of prediction using various 

Machine Learning (ML) models. This challenge 

extends to Deep Learning (DL) models like CNN and 

Long Short Term Memory (LSTM) making 

researchers delve into multiple feature extraction and 

selection techniques specifically for time series data. 

Incorporating an Analysis of Variance (ANOVA) 

feature selection proves particularly beneficial as it 

excludes unnecessary and redundant features. 

The contribution of this paper is listed as follows - 

1) ANOVA F-Measure technique for feature 

selection to ignore redundant features 

2) Hybrid approach featuring 1D-CNN and 

BiLSTM. 

3) Enhancing the prediction of the energy 

consumption of household appliances. 

Further in this paper, in Section 2, the literature 

review and previous related work are analyzed and 

discussed thoroughly. In Section 3, the proposed 

methodology and its components are discussed 

briefly. In Section 4, the performance is evaluated, 

and the results are discussed briefly with comparison. 

Section 5 concludes the paper with a conclusion and 

future scope. 

2. Related work 

2.1 Review of available dataset 

There are different datasets aimed at forecasting 

the residential household energy load or consumption. 

These datasets range from multiple input parameters 

like internal and external surrounding parameters, 

meter readings [5, 6], and many more. The 

dependency of these parameters for predicting energy 

consumption also depends on the dataset variability 

and inter-dependency with the output variable. The 

proper understanding of the input parameters and 

output parameters can be achieved well using various 

complex and simple models for forecasting.  

The Individual Household Electric Power 

Consumption (IHEPC) dataset [7] consists of meter 

readings, relative world average power, and many 

different parameters related to household energy data. 

The dataset [8] related to energy consumption was 

collected in London, where the input parameters are 

read from the smart meters. The Dutch Residential 

Energy Dataset (DRED) [9] is the Netherlands 

distribution comprised of numerous sensors that 

monitor environmental parameters, consumption of 

electricity, and the number of individuals living.  

The total energy of the appliances used in a 

household is collected concerning the surrounding 

internal and external variables, which will be inputted 

for the prediction of energy consumption Datasets 

like the Domestic Electricity Demand Dataset of 

Individual Appliances in Germany (DEDDIAG) [10] 

and [11] are collected with the help of micro-

processes at the residential houses. The proposed 

strategy [12] highlights the relationship between the 

energy consumption of appliances and environmental 

variables. Understanding the energy consumption 
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behavior of appliances due to outside and inside 

environmental parameters is recorded and studied in 

this dataset by researchers. This dataset is selected for 

further exploration and this dataset description can be 

seen in Section 3.1.  

2.2 Review of ML/DL models 

Over the years, researchers have dedicated 

significant efforts to predicting energy consumption 

using a diverse range of ML/DL approaches. These 

studies have involved testing ML algorithms on 

datasets containing previously collected sensor data, 

including Support Vector Regressor (SVR) and 

Decision Tree Regressor (DTR) [13]. Artificial 

Neural Networks (ANN) have also been explored for 

their efficacy in predicting energy consumption 

trends. Additionally, the LSTM model, a type of 

Recurrent Neural Network (RNN), has been applied 

to forecast energy usage. These diverse approaches 

have undergone testing across various datasets, all 

characterized by time series data capturing energy 

consumption patterns.  

Several papers have been undertaken to 

scrutinize and analyse the electricity consumption in 

a residential building. Researchers [14] use a fuzzy 

network model for the prediction of energy 

consumption. Further, it also discusses the models 

using an energy management system for saving 

electricity. Authors [15] used the neural fuzzy stem 

to enhance and monitor energy efficiency.  

Researchers used an ANN as the basic DL model 

to predict the energy in residential buildings in British 

Columbia [16]. To design a retrofit model, 

researchers in [17] used the ANN for the prediction 

task. In [18] the researchers utilized the Multi-Layer 

Perceptron (MLP) and SVR techniques for 

forecasting energy consumption. For a Tsanas and 

Xifara dataset [19] they achieved the Root Mean 

Square Error (RMSE) of 2.626. SVR also performs 

better in their experimentation. For SVR, the RMSE 

of 3.4 has been achieved by authors [20].  

Time series analysis has been performed on the 

dataset to predict the energy consumption using the 

Autoregressive Integrated Moving Average 

(ARIMA) model [21, 22] Electricity consumption of 

a hospital is analyzed in the [23], which uses the 

ARIMA model for the forecasting. Due to over-

fitting, the performance of neural networks cannot be 

improved further by just adding layers to that dataset. 

This study [24] proposes a deep learning model and 

RNN fusion that batches a set of data into an input 

pool.   

Hybrid models have also been implemented on 

the various energy prediction datasets. These hybrid 

models, such as CNN-LSTM [17], CNN-Gated 

Recurrent Unit (GRU) [18], Multi-information 

Fusion Deep Learning (MFDL) [19], and many more, 

have been implemented by the researchers. 

Compared to prior studies, hybrid CNN and LSTM 

models from [25] have yielded good results but still 

need improvement. They have not yet been able to be 

considered as better outcomes in that domain. Two 

tiers of information extraction are proposed where the 

lower and higher-level LSTM and CNN are 

implemented, respectively.  

In [26], researchers have been applied to a dataset 

aiming to forecast household energy prediction in an 

individual house. In this study [27], the proposed 

structure's primary two phases include training and 

data refinement. CNN features are taken from the 

input data set and fed into GRU during the training 

phase, where GRU can learn and adapt the sequential 

model. GRU-based models are more straightforward 

and contain fewer gradient flow gates than LSTM-

based models, reducing their volatility. Due to CNNs' 

ability to extract representative features and their 

efficacy for forecasting results.  

This study [20] has integrated an attention 

mechanism with the RNN-based type models like 

GRU, LSTM, etc. It was found that longer input 

patterns do not typically contribute to improved 

accuracy; accuracy falls as the prediction range 

increases. This has been implemented on the dataset 

to predict the load.  

Many researchers have experimented with hybrid 

models containing a BiLSTM with different neural 

networks for the prediction of the time series data. 

These time series data applications range from stock 

prediction and more. On the dataset related to energy 

consumption, it was explored less. Authors [28] 

conducted experiments to compare the performance 

of the CNN-BiLSTM hybrid model applied on 

IHEPC for prediction. To forecast electric energy 

consumption, the proposed structure performs more 

effectively than different approaches over a range of 

performance criteria, including narrow and long-term 

periods.  

In [29], research introduces an advanced hybrid 

approach that integrates a CNN with a Multiple-layer 

BiLSTM approach for efficiently predicting energy 

consumption in power systems. With the 

incorporation of a three-layer BiLSTM model, this 

approach focuses on power management. It 

eliminates irregularities and enhances the quality of 

the data. Improved data sequences are processed by a 

DL network to allow effective prediction-making. 

The last phase produces probability metrics by 

comparing the actual and expected data. This hybrid 
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BiLSTM model has been applied to IHEPC [7] for 

prediction.  

For the selected appliance energy dataset, a 

stacked model comprises LSTM and BiLSTM for 

prediction able to capture the temporal relationships, 

effective computational time and complexity, etc. 

The sequence component of time series data is the 

focus of LSTM and BiLSTM models, which 

indicates significant spatial patterns are ignored. 

They can also absorb information slowly while they 

do it step-by-step. In [30] different ML and DL 

models have been applied to household appliance 

data for forecasting energy consumption where they 

employed the Pearson Correlation Coefficient (PCC) 

for the selection of the enhanced features. PCC 

measures simple linear relationships between 

continuous variables but may not fully capture 

complex relations between input and target variables 

showing researchers to consider variables and 

research questions to determine the most appropriate 

method for feature selection. They had tested over a 

wide range of models. In a study [31], the LSTM 

model with minmax scaling data to [-1,1] and 

selection of data based on covariance is implemented 

on the dataset. For the selected dataset the 

experimental results can be seen in Section 4. 

2.3 Summary of literature review 

The primary focus of the discussion is the 

application of different hybrid DL/ML models to 

predict the energy consumption of appliance datasets. 

However, these datasets show an evident absence of 

use of the room's surroundings and surrounding 

environment. More specifically, there is a lack of 

research and exploration on datasets that include 

features like temperature and relative humidity from 

various rooms in a home. This offers a chance for 

more study and advancement in modelling and 

predicting energy usage, which can be found in 

selected dataset and according to previous related 

work a hybrid DL model is proposed to enhance the 

prediction efficiency.  

3. Proposed methodology 

In this section, the proposed methodology and its 

respective tools and techniques are discussed 

thoroughly. The generalized flow of the proposed 

methodology can be found in  

3.1 Dataset description 

In this paper, an open-access Appliances Energy 

Consumption (AEC) dataset from the (University of 

California, Irvine Machine Learning) UCI ML  

 

 
Figure .1 Generalized Block Diagram of Proposed 

Methodology 

 

Repository, is used to evaluate a proposed 

methodology and predict the total energy 

consumption of household appliances. In this dataset, 

total energy consumption depends on various 

features like temperature and relative humidity of 

rooms in a house and temperature, relative humidity, 

wind speed, and dewpoint. This dataset is collected 

by Luis Candanedo using a Zigbee module for 

collecting a house's temperature and relative 

humidity. The external features around the house are 

collected from the nearest weather station, Chievres 

Airport, Belgium [11]. 

The researchers from Reliable Prognosis collect 

and download hourly data from the weather station. 

Apart from logged data, the author [11] has also 

included two non-dimensional random variables. The 

features in the dataset with proper units are tabulated 

in [11] A dataset is collected from 11/01/2016 to 

27/05/2016 at 10-minute intervals. Among the total 

energy consumption of appliances, this dataset also 

includes the total energy consumption of light, which 

was ignored here in this study. 

3.2 Data pre-processing 

Data pre-processing plays a crucial role in 

enhancing the efficiency of ML models by 

optimizing computational power and ensuring the 

focus on the most relevant information. 

3.2.1. Data visualization 

A thorough dataset analysis is essential for 

selecting appropriate techniques for data pre-

processing. The dataset comprises a total of 28 

features and includes 19,735 data points for each 

feature. To ensure data integrity, null values were 

examined to remove such values from the dataset. It 
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Table 1. Feature Set in a dataset 

Parameter  Description  Unit I/O 

T1 Kitchen's temperature 

◦C 

Input 

Variab

le - 

Inside 

House 

Param

eters 

T2 
Living Room's 

temperature 

T3 
Laundry Room's 

temperature 

T4 
Office Room's 

temperature 

T5 
Bathroom's 

temperature 

T6 
Ironing Room's 

temperature 

T7 
Outside building's 

temperature 

T8 Room 1's temperature 

T9 Room 2's temperature 

RH1 
Kitchen's relative 

humidity 

% 

RH2 
Living Room's 

relative humidity 

RH3 
Laundry Room's 

relative humidity 

RH4 
Office Room's 

relative humidity 

RH5 
Bathroom's relative 

humidity 

RH6 
Ironing Room's 

relative humidity 

RH7 
Outside building's 

relative humidity 

RH8 
Room 1's relative 

humidity 

RH9 
Room 2's relative 

humidity 

Tout 
Temperature from 

Weather Station 
◦C 

Input 

variabl

e - 

Outsid

e 

House 

Param

eters 

Press_mm

_Hg 

Pressure from 

Weather Station 

mm-

Hg 

RHout 
Relative Humidity 

from Weather Station 
% 

Windspeed 
Wind Speed from 

Weather Station 
m/s 

Visibility 
Visibility from 

Weather Station 
km 

rv1,  rv2 
Non-dimensional 

Random Variable 
 

Input 

Variab

le 

Date 
Date and Timestamp 

of the data collected 
 

Input 

variabl

e 

Appliances 

Total Energy 

consumption of an 

Appliance 

Wh 

Output 

variabl

e 

 

was observed that the repetition of values there within 

the dataset as it is measured by the sensor within a 

10-minute interval. The measured values of features 

in the dataset also show wide-ranging variations. 

Given these characteristics, it becomes necessary 

to implement proper scaling techniques and properly 

select features to enhance the dataset's quality for 

subsequent ML/DL model training. An overall 

appliance energy consumption value distribution 

according to time instances can be found in Figure. . 

3.2.2. Data scaling 

The Minimum-Maximum (MinMax) Scaler is 

designed to standardize and shrink the data within a 

specified range, often from 0 to 1. To bring all 

features to a consistent and comparable scale, 

eliminating biases that may occur due to variations in 

the original feature magnitudes. The shape of the 

data's distribution in the MinMax Scale tried to be 

kept intact, and it is beneficial in scenarios where ML 

models are sensitive to the scale of input features, 

enabling more effective learning and improved 

accurate predictions. The model can capture the 

underlying patterns and variations in the data. The 

formula for MinMax scaling can be expressed in Eq. 

(1) and Eq. (2) 

 

𝑋[𝑛𝑜𝑟𝑚] =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

(1) 

 
𝑋[𝑚𝑖𝑛𝑚𝑎𝑥𝑠𝑐𝑎𝑙𝑒𝑑] =

𝑋[𝑛𝑜𝑟𝑚][𝑚𝑎𝑥 − 𝑚𝑖𝑛] + 𝑚𝑖𝑛 (2)
 

 

Where X, Xmax, Xmin is the original value, the 

maximum and minimum value in each feature, 

respectively; min, max is the minimum and 

maximum value in a defined range for normalization 

for transformation, respectively; X[norm] is the fraction 

for scaling of the features, and X[minmaxscaled] is the 

transformed MinMax scaled of the features. 

3.3 Feature selection technique 

The ANOVA F-test measurement is the most 

statistical feature selection technique for eliminating 

the redundant features overall. This method assesses 

whether the means of two or more features are 

significantly different, making it a valuable tool for 

identifying features that contribute significantly to 

the observed variability [32]. The backbone of the 

ANOVA is to partition the total variability in the 

dataset into different components, allowing the 

evaluation of the variability between groups relative 

to the variability within groups.  
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Figure. 2 Energy Consumption of Appliances VS Time Instances in an AEC dataset 

 

If the calculated F-statistic is greater than the 

critical value, it indicates significant differences 

between at least two group means. It is applied to 

feature value by treating them as groups. The F-

statistic for each feature helps evaluate whether the 

means of these feature values significantly differ,  

making it possible to identify features that contribute 

significantly to the variance in the target variable.  

The F-statistic, a key component of the ANOVA F-

test, is calculated by Eq. (5). 

 

𝜎[𝑏𝑒𝑡𝑤𝑒𝑒𝑛−𝑔𝑟𝑝𝑠.]
2 =

𝛴𝑖=1
𝑙 𝑙𝑖[𝑥̅𝑖 − 𝜇]

[𝑁𝑓 − 1]
(3) 

 

𝜎[𝑤𝑖𝑡ℎ𝑖𝑛−𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠]
2 =

𝛴
𝑖=1

𝑁𝑓
𝛴𝑝=1

𝑙𝑖 [𝑥𝑖𝑝 − 𝑥̅𝑖]

[𝑁 − 𝑁𝑓]
(4) 

 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =
𝜎[𝑏𝑒𝑡𝑤𝑒𝑒𝑛−𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠]

2

𝜎[𝑤𝑖𝑡ℎ𝑖𝑛−𝑔𝑟𝑝𝑠.]
2

(5) 

 

Where li is the number of observations in lth group, 

𝜇 is the total mean of the dataset, 𝑥̅𝑖 is the mean of 

samples in feature 'i', N is the total sample size of the 

dataset, Nf is the sample size of a respective feature 

'f', xip is the pth observations in ith feature, 

𝜎[𝑏𝑒𝑡𝑤𝑒𝑒𝑛−𝑔𝑟𝑝𝑠]
2  is the variance between the features 

Eq. (3), 𝜎[𝑤𝑖𝑡ℎ𝑖𝑛−𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠]
2  is the variance within the 

features in Eq. (4), F-score is an F-measure value 

used for comparison. 

The steps in the ANOVA F-test are listed as 

follows; 

1) The dataset is divided based on the features the 

target variable represents. 

2) For each feature, the F-statistic is evaluated. 

3) The significance is obtained by comparing it with 

a critical value. 

4) Features with significant F-measures are 

considered relevant contributors to the variability 

in the target variable.  

3.4 Deep learning models 

This section discusses different DL models such 

as 1D-CNN, LSTM, and BiLSTM, which will be 

investigated further to estimate energy usage. 

3.4.1. One-dimensional convolutional neural network 

(1D-CNN) 

1D-CNN is a neural network architecture used 

here for processing sequential data or one-

dimensional signals. The architecture of 1D-CNN 

comprises convolutional layers that scan input data 

with one-dimensional filters, capturing local patterns 

and learning hierarchical representations [33]. The 

first layer of a 1D-CNN typically involves 

convolutional operations, where filters slide over the 
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input data, extracting features through convolutional 

and pooling operations. Convolutional layers are 

crucial for learning spatial hierarchies and 

recognizing patterns with different levels of 

abstraction. The subsequent pooling layers 

downsample the output of the convolutional layers, 

reducing the spatial dimensions for retaining the most 

needful features. 

Further fully connected layers are incorporated, 

which enables learning relationships in the data. 

These layers allow the features learned by the 

convolutional layers to make predictions based on the 

extracted representations. Activation functions, such 

as Rectified Linear Unit (ReLu), are commonly 

applied after each layer to introduce non-linearity and 

enhance the model’s capacity to capture complex 

patterns. prediction. 

3.4.2. Long short-term memory (LSTM) 

LSTM models are a part of RNN architecture 

used for capturing long-term dependencies in 

sequential data. LSTM consists of a memory cell that 

enables the network to store and retrieve information 

selectively. At the core of the LSTM architecture is 

the LSTM cell, a fundamental building block that has 

the model's ability to learn and remember information 

over varying time scales [34]. For prediction is done 

by forwarding it to further LSTM cells or fully 

connected layers.  

 
𝐹[𝑠] = 𝜎[𝑊𝐹 . 𝑋𝑠 + 𝑊𝐹

′ . 𝐻𝑠−1 + 𝐵𝐹] (6) 

 
𝐼[𝑠] = 𝜎[𝑊𝐼 . 𝑋𝑠 + 𝑊𝐼

′. 𝐻𝑠−1 + 𝐵𝐼] (7) 

 
𝐶[𝑠] = 𝑓[𝑊𝐶 . 𝑋𝑠 + 𝑊𝐶

′ . 𝐻𝑠−1 + 𝐵𝐶] (8) 

 
𝑂[𝑠] = 𝜎[𝑊𝑂. 𝑋𝑠 + 𝑊𝑂

′ . 𝐻𝑠−1 + 𝐵𝑂] (9) 

 

𝐶[𝑠]

~

= 𝐹𝑠. 𝐶𝑠−1 + 𝐼𝑠. 𝐶𝑠 (10) 

 
𝐻[𝑠] = 𝑂𝑠. 𝑓[𝐶𝑠] (11) 

 
𝑌[𝑠] = 𝑊𝑌𝐻

. 𝐻𝑠 + 𝐵𝑌 (12) 

 

Where at interval s, Xs, Fs, Hs, Is, Cs,  Os, and Ys is 

the input, output of forget gate, hidden state, output 

of input gate, cell state, output of output gate and 

output of model at interval s, 1respectively; WF, W'F, 

BF, WI, W'I, BI, WO, W'O, BO and WC, W'C, BC is the 

weight, hidden layer weight and bias of forget, input, 

output gate, and cell state respectively, f, 𝜎  is the 

associated activation function; BY is the bias 

associated with the output layer, 𝑊𝑌𝐻
 is the weight 

associated with the hidden output state. 

The LSTM cell comprises a cell state, an input 

gate, a forget gate, an output gate, and various 

weights and biases. The cell state is used to forward 

information across time steps. The input gate 

regulates the flow of new information into the cell 

state, determining which elements are updated and to 

what extent. The forget gate decides which 

information from the previous cell state should be 

ignored that is irrelevant. The mechanism of the 

LSTM cell delves around the concept of gates, which 

control the information flow. Each gate includes 

sigmoid and Hyperbolic tangent (tanh) activation 

functions. The tanh function is used to update the cell 

state. These gates allow LSTMs to capture and 

remember important patterns across sequences, 

reducing gradient problems.  

The formula used for obtaining an output from 

the forget gate, input gate, cell state, and output gate 

can be seen in Eq. (6-9), respectively. For updating 

the cell state, Eq. (10) is used whereas Eq.(11) and 

Eq. (12) deal with a final output of the layer.  

3.4.3. Bi-Directional LSTM 

BiLSTM networks allow the understanding of 

temporal dependencies by simultaneously processing 

input sequences in both forward and backward 

directions. The flow of information in the BiLSTM is 

a two-way flow of input sequence [35]. This 

bidirectional processing enables the model to capture 

complex relationships within the data, contributing to 

its effectiveness for predictions. This bidirectional 

processing captures dependencies that may not be 

clear when considering only one direction, allowing 

the model to grasp the complex relationships within 

the data.  

Usually, the activation functions used for these 

gates are the tanh and ReLu functions. This ensures 

that the values are constrained in the range of [-1, 1], 

allowing the model to store and learn long-term 

dependencies in the sequential data. ReLu function 

can be considered here for incorporating non-

linearity in a model, allowing a better understanding 

of the data to predict the output.  

 
𝑌[𝑠] = 𝑓[𝐻𝑠, 𝐻𝑠

′] (13) 

 

Where Hs is the output of the forward layer at 

interval s, H's is the output of the backward layer at 

interval s, Ys is the overall output of the model at 

interval s. 

The LSTM cell is a building block of the 

BiLSTM, having specialized gates that regulate the 



Received:  February 8, 2024.     Revised: March 5, 2024.                                                                                                 206 

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024           DOI: 10.22266/ijies2024.0630.17 

 

flow of information at each time step. More details on 

these gates can be found in the Section 3.4.2. The 

outputs from both the forward and backward LSTM 

layers are concatenated, a composite representation 

of the input sequence that integrates information from 

both directions which is evident from Eq. (13) This 

concatenated output is particularly important as it 

allows a better understanding of the temporal 

dynamics and further layers allow better 

representation which helps in enhancing the 

performance and accuracy. 

3.5 Hybrid deep learning models 

This section, different Combinations of DL 

models like CNN-LSTM and CNN-BiLSTM are 

discussed. 

3.5.1. CNN-LSTM omdel 

This hybrid model sequentially integrates both 

architectures that combine the strengths of two neural 

network models, CNN and LSTM. The model can 

achieve superior performance compared to using 

either architecture in isolation and is also robust to 

variations in input data.  

3.5.2. Proposed model 

The convolutional operations of a lD-CNN are 

beneficial for extracting short-range dependencies 

and spatial hierarchies in the data. This makes 1D-

CNNs suitable for tasks where recognizing specific 

patterns is essential. A BiLSTM and 1D-CNN hybrid 

model architecture that comprises the potential 

benefits of both RNN and CNN. The BiLSTM 

enables the handling of long-range dependencies 

within sequential data as well as processes input 

sequences in both forward and backward directions 

simultaneously. The two directional passes allow the 

network to understand the sequence by considering 

past and future information at each time step.  

 
𝑍[𝑠] = 𝑓𝑐𝑜𝑛𝑣[𝑊𝑐𝑜𝑛𝑣 . 𝑋𝑠 + 𝐵𝑐𝑜𝑛𝑣] (14) 

 

𝐻[𝑠]
𝑓𝑤𝑑

= 𝐿𝑆𝑇𝑀𝑓𝑤𝑑[𝑍𝑠, 𝐻𝑠−1
𝑓𝑤𝑑

] (15) 

 

𝐻[𝑠]
𝑏𝑤𝑑 = 𝐿𝑆𝑇𝑀𝑏𝑤𝑑[𝑍𝑠, 𝐻𝑠−1

𝑏𝑤𝑑] (16) 

 

𝐻[𝑠] = [𝐻[𝑠]
𝑓𝑤𝑑

, 𝐻[𝑠]
𝑏𝑤𝑑] (17) 

 

The BiLSTM layer is followed by another 

BiLSTM layer, which may be represented 

mathematically as; 

 

𝐻[𝑠]
𝑓𝑤𝑑

= 𝐿𝑆𝑇𝑀𝑓𝑤𝑑[𝐻𝑠 , 𝐻𝑠−1
𝑓𝑤𝑑

] (18) 

 

𝐻[𝑠]
𝑏𝑤𝑑 = 𝐿𝑆𝑇𝑀𝑏𝑤𝑑[𝐻𝑠 , 𝐻𝑠−1

𝑏𝑤𝑑] (19) 

 

 

 
Figure. 3 Architecture of hybrid CNN-BiLSTM model 

 



Received:  February 8, 2024.     Revised: March 5, 2024.                                                                                                 207 

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024           DOI: 10.22266/ijies2024.0630.17 

 

A Dense layer, which usually takes place before 

the prediction of the output, is expressed as follows; 

 

𝑌[𝑠] = 𝑓𝑑𝑒𝑛𝑠𝑒[𝑊𝑑𝑒𝑛𝑠𝑒 . 𝐻𝑠 + 𝐵𝑑𝑒𝑛𝑠𝑒] (20) 

 

Where at interval s, Xs, Zs is the input, output of 

convolution layer, fconv is the activation function for 

convolution layer, fdense is the activation function for 

dense layer, 𝐻𝑠
𝑓𝑤𝑑

, 𝐻𝑠
𝑏𝑤𝑑 ,   is the hidden states in the 

forward direction and backward direction, LSTMfwd, 

LSTMbwd is the LSTM operations Eq. (6-12) in the 

forward direction and backward direction, Bconv, Bdense 

is the bias of convolution layer and dense layer. 

The proposed hybrid model is trained as shown 

in Figure. , the weights and biases of both 

components are simultaneously adjusted. It 

minimizes a selected objective function also known 

as the loss function that quantifies the difference 

between projected and actual outcomes. The 

effectiveness proposed hybrid model has been 

demonstrated in further section. 

3.6 Performance evaluation parameters 

The model's performance is evaluated and 

compared using several parameters such as Mean 

Square Error (MSE), RMSE, Coefficient of 

Determination (R2 Score), and training time. 

Maintaining and tuning the hyperparameter is 

important to obtain better results, which will 

eventually help better predict the target variables [12]. 

MSE, RMSE, and R2 Score can be evidently seen in 

Eq. (21), Eq. (22), and Eq.(23), respectively. The 

duration of training time can be influenced by various 

factors.  

 

𝑀𝑆𝐸 =
1

𝑁
[𝑌𝑖 − 𝑌𝑖̂]

2
(21) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑[𝑌𝑖 − 𝑌𝑖̂]

2
𝑛

𝑖=1

= √𝑀𝑆𝐸 (22) 

 

𝑅2 = 1 −

∑ [𝑌𝑖 − 𝑌𝑖̂)]
2𝑁

𝑖=1

∑ [𝑌𝑖 − 𝑌]2
𝑁

𝑖=1

(23) 

 

𝑡𝑇𝑜𝑡𝑎𝑙 = 𝛴𝑖=1
𝐼𝑇𝑜𝑡𝑎𝑙𝑡𝑖 (24) 

 

Where 𝑌𝑖, 𝑌𝑖̂, 𝑌is the actual, predicted value, and 

mean of actual value, respectively; N is the total 

number of samples, tTotal is the total training time of 

the experimentation, ITotal is the total number of 

iterations which are obtained by ITotal = [Epoch] x 

[Time steps per epoch], ti is a particular iteration time. 

 

 
Figure. 4 Feature Importance Graph obtained using ANOVA F-measure technique 
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4. Results and discussions 

4.1 Experimental platform 

In this paper, for the experimental purpose Central 

Processing Unit CPU having processor i5-8250U @ 

1.6 GHz with 4 cores and 16 GB RAM is employed for 

experimentation. 

4.2 Feature selection results 

By implementing the ANOVA, only the best-

contributing features are selected. The ANOVA F-

test is used as the scoring function. This scoring tries 

to maintain the linear relationship between each 

feature and output variable. A higher F-score 

suggests that the inclusion of that feature may 

significantly improve the model's performance in 

determining the variance in the target variable. For 

feature selection, the parameter used indicates that all 

features should be selected based on their scores. The 

implemented feature selection method statistics can 

be seen in Figure.. It was viably found that it includes 

a few features with lower values. These low F-score 

features need to be dropped. Features like rv1, rv2, 

Visibility, RH4 and RH5. It was seen that the random 

variable was dropped even when different feature 

selection techniques like PCC [31] and Covariance 

[32] were implemented. While eliminating it was 

found that different sets of features are dropped when 

PCC is applied. The comparison of selected feature 

on the ML/DL model can be seen in Section 4.3. 

4.3 Experimental results and discussion  

The model has undergone training for 100 epochs 

with an early stopping mechanism, where it 

comprises a patience level of 5 to monitor MSE loss 

performance. This strategy ensures that the training 

process halts if no improvement is observed over five 

consecutive epochs, preventing overfitting. The 

performance metrics were evaluated up to this epoch 

value, influencing the overall training time, which is 

eventually connected with the number of epochs. 

Various ML/DL models were trained on the dataset 

for improved predictions. In The application of DL 

models, including LSTM, CNN, and BiLSTM, is 

implemented for proper understanding and prediction 

which can be seen in エラー! ブックマークが自己

参照を行っています。. The LSTM enables a long-

term understanding of the features whereas the CNN 

exhibited a short-term understanding of spatial 

features. However, the LSTM and CNN hybrid 

model also shows further room for improvement. 

However, it's essential to note that the computational 

complexity of these hybrid models increases with the 

inclusion of filters and units in their layers. As the 

BiLSTM allows the understanding of long-term 

features in both forward and backward directions. 

Furthermore, a combination of BiLSTM and CNN 

proved to be particularly effective from Table 2. 

, the experimentation result on the test dataset can 

be seen, and it is evident that ML models did not 

significantly contribute to enhancing the prediction 

of total household appliance energy consumption. 

The SVR Model shows poor performance in 

forecasting. Prediction distribution results for the 

proposed model compared with the inputted values 

can be seen in エラー! 参照元が見つかりませ

ん。, and the enlarged version for a small subset of 

test data can be seen in エラー! 参照元が見つかり

ません。(a). 

 
Table 1. Comparison of predicted and real values. 

Model Name MSE 
RMS

E 

R2 

Score 

Total 

Trainin

g Time 

(Sec) 

SVR (Linear 

kernel) 
901.861 30.031 

0.885

6 
14 s 

SVR (RBF 

kernel) 
5032.9 70.943 0.362 54 s 

LSTM 

(50)1(50)2 

(50)3(50)4 

422.734

4 

20.560

5 

0.951

4 
462 

LSTM 

(128)1(64)2(32

)3 

9.426 3.07 0.987 484 

CNN 

(64)1(32)2 
9.727 3.1188 0.989 126 

CNN 

(64)1+LSTM 

(64)1(32)2 

5.849 2.4185 0.992 196 

BiLSTM 

(128)1 
24.96 4.9959 

0.991

5 
832 

BiLSTM (64)1 4.98 3.8704 0.988 64 

BiLSTM 

(128)1(128)2 
35.567 5.9638 0.985 1296 

CNN (128)1 + 

BiLSTM 

(128)1 

[Proposed] 

3.06 1.7493 0.996 920 

 

𝑓𝑅𝑒𝐿𝑢 = 𝑚𝑎𝑥[0, 𝑥] (25) 

 

The application of DL models, including LSTM, 

CNN, and BiLSTM, is implemented for proper 

understanding and prediction which can be seen in エ

ラー! ブックマークが自己参照を行っていま

す。. The LSTM enables a long-term understanding 

of the features whereas the CNN exhibited a short-
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term understanding of spatial features. However, the 

LSTM and CNN hybrid model also shows further 

room for improvement. However, it's essential to note 

that the computational complexity of these hybrid 

models increases with the inclusion of filters and 

units in their layers. As the BiLSTM allows the 

understanding of long-term features in both forward 

and backward directions. Furthermore, a combination 

of BiLSTM and CNN proved to be particularly 

effective from エラー! ブックマークが自己参照

を行っています。. 

Extensive testing was conducted on various 

combinations of BiLSTM and CNN architectures, 

and the best configuration of the units and layers of 

BiLTM and CNN was selected  

Table 2 provides details on the fine-tuning of 

input parameters for BiLSTM and CNN, choosing 

the best possible model through such adjustments of 

filters and units.  

 

Table 2. Performance evaluation of various hybrid BiLSTM-CNN approaches by tuning parameters with ANOVA 

Model Name MSE RMSE 
R2 

Score 
𝐭𝐓𝐨𝐭𝐚𝐥 

(Sec) 

CNN (64)1 + 

BiLSTM (64)1(64)2 
15.936 3.992 0.987 735 

CNN(64)1 + 

BiLSTM (64)1 
18 4.242 0.987 256 

CNN(128)1(64)2 + 

BiLSTM(64)1 
6.4715 2.5439 0.991 424 

CNN(64)1(64)2 + 

BiLSTM(64)1(64)2 
4.1205 2.0299 0.994 656 

CNN (128)1(64)2 + 

BiLSTM (128)1 
6.591 2.5673 0.989 1728 

CNN(128)1 + 

BiLSTM (128)1 

[Proposed] 

3.06 1.7493 0.996 920 

 

This iterative tuning process is aimed at achieving 

optimal performance and robust predictive 

capabilities for the specific characteristics of the 

dataset. Overall, in the DL models, the ReLu 

activation function is implemented and that can be 

seen in Eq. (エラー! 参照元が見つかりません。). 

In The application of DL models, including 

LSTM, CNN, and BiLSTM, is implemented for 

proper understanding and prediction which can be 

seen in エラー! ブックマークが自己参照を行っ

ています。 . The LSTM enables a long-term 

understanding of the features whereas the CNN 

exhibited a short-term understanding of spatial 

features. However, the LSTM and CNN hybrid 

model also shows further room for improvement. 

However, it's essential to note that the computational 

complexity of these hybrid models increases with the 

inclusion of filters and units in their layers. As the 

BiLSTM allows the understanding of long-term 

features in both forward and backward directions. 

Furthermore, a combination of BiLSTM and CNN 

proved to be particularly effective from エラー! ブ

ックマークが自己参照を行っています。. 

 and  

Table 2, in parenthesis, the input parameters like 

filters and LSTM units consist. The LSTM, CNN, 

and LSTM-CNN models best-obtained result after 

hyperparameter tuning is only recorded. It is also 

seen that by implementing the feature selection 

technique there is an enhancement in its model's 

performance. The complexity is also reduced due to 

this. The MSE loss of the best-performed model can 

be seen in エラー! 参照元が見つかりません。(b). 

4.4 Comparative analysis  

Our approach has performed far better than theirs 

by comparing with other's work on this dataset which 

can be seen in Section 2. In [31], different ML/DL 

models are experimented with that show 65.54 for 

SVM, 65.64 for Random Forest (RF), 21.36 for 

LSTM, 64.99 for K-Nearest Neighbour (KNN), and 

59.81 for the Extreme Random Forest (ERF) model. 

LSTM outperforms other models in fitting nature and 

understanding data distribution, with a 0.97 R2 score 

indicating room for improvement in prediction 

efficacy and better understanding. These other ML 

models are unable to understand the behaviour of 

time-series data.  

The min-max scaling shows depending on the 

characteristics of the data, min-max scaling to [0, 1] 

may be more beneficial for time series data due to the 

conservation of original values, benefits for 



Received:  February 8, 2024.     Revised: March 5, 2024.                                                                                                 210 

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024           DOI: 10.22266/ijies2024.0630.17 

 

normalization, and such testing is performed using 

the LSTM model. A covariance-based feature 

selection also implement that yields the best result 

having aggregate RMSE of 5. Research in [30] 

showcased the hybrid LSTM and BiLSTM model 

unable to understand the complex spatial features 

which is done by using the CNN.  

In [37] models like RF, SVM, and ANN are 

implemented without feature selection that yielded 

result of 21.46, 67.71, 96.61 RMSE and 0.239, 0.764, 

0.974 R2 Score. 

5. Conclusion 

Managing the proper electric energy is necessary 

for maintaining the stability of the smart grid, and it 

also contributes towards sustainability. For energy 

management systems, forecasting of energy 

consumption plays a crucial role. Analysis of 

consumption trends helps individuals to contribute to 

global energy conservation. This paper evaluates 

prediction parameters using different ML/DL models 

on the AEC dataset. The ANOVA F-measure 

technique has been utilized for feature selection to 

eliminate redundant features. It helps remove features 

like visibility, random variables, and values having a 

score of less than 3. The F-score value ranges from 

1.07 to 22.42. The best hybrid CNN-BiLSTM model 

was chosen through hyper-parameter adjustment.  

This study performs a comparative analysis of 

standalone and hybrid DL/ML models. The obtained 

parameters such as MSE, RMSE, R2 score, and ttotal 

of the proposed model are 3.06, 1.7493, 0.996 and 

920 Sec, respectively. For CNN-LSTM, these values 

are 5.849, 2.4185, 0.992, and 196 Sec, respectively. 

The result shows a significant improvement while 

utilizing the hybrid model, which can predict the total 

energy consumption output accurately. In the future, 

this can be used to enhance the predictive ability of 

the energy consumption of appliances, which will 

help in energy management systems and smart grids, 

eventually contributing to sustainability by lowering 

the stress on environmental resources. 
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