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ABSTRACT  

In order to realize the rapid and accurate identification of different maturity of Cerasus humilis fruit, this study 

explored the nondestructive testing method of Cerasus Humilis fruit maturity based on hyperspectral imaging 

technology. The hyperspectral data of 320 samples of Cerasus humilis fruit were collected by using a 

hyperspectral imaging system in the range of 895~1700 nm. By comparing the prediction accuracy of the 

partial least squares (PLS) model established by four preprocessing methods, the competitive adaptive 

reweighted algorithm (CARS), successive projection algorithm (SPA), and random frog (RF) were used to 

extract characteristic wavelengths, and partial least squares-discriminant analysis (PLS-DA) and least 

squares-support vector machine (LS-SVM) discriminant models were established. The results showed that the 

SPA-LS-SVM model had the highest discrimination accuracy for the four types of maturity samples, and the 

discrimination accuracy of the correction set and prediction set were 85.00% and 87.50%, respectively. This 

study provides a theoretical reference for the rapid and nondestructive testing of the maturity of Cerasus 

Humilis fruit by hyperspectral imaging technology. 

 

摘要 

为了实现对不同成熟度欧李果进行快速、准确识别，本研究探讨基于高光谱成像技术对欧李果成熟度进行无损

检测研究的方法。利用 895~1700 nm 范围内的高光谱成像系统采集不同成熟时期（转色期、着色期、成熟期、

完熟期）的欧李果共 320 个样本的高光谱数据。通过对比 4 种预处理方法建立的 PLS 模型预测精度，应用

CARS、SPA、RF 提取特征波长，并分别建立 PLS-DA 和 LS-SVM 判别模型。结果表明，SPA-LS-SVM 模型

对 4 类成熟度样本的判别准确率最高，其校正集和预测集的判别准确率分别为 85.00%和 87.50%。该研究为高

光谱成像技术在欧李果成熟度的快速、无损检测提供了理论参考。 

 

INTRODUCTION 

 As a unique fruit in China, the Cerasus Humilis fruit is also called “calcium fruit” because it is rich in 

active calcium and easy to be absorbed by the human body. The fruit is bright in color, unique in flavor and 

rich in nutrition. It can be eaten as fresh fruit or processed into fruit juice, wine, vinegar and other products. 

Maturity is an important factor that determines the shelf life, edible quality and postharvest storage of fruits. 

With the general improvement of social economic level and consumers' purchasing power, people pay more 

and more attention to the quality and safety of fruits. Determining the optimal maturity is the key to ensure the 

quality and storage of fruits. At present, the method of distinguishing the mature stage of the Cerasus humilis 

fruit mainly depends on people's experience and intuition. However, this method is inefficient and subjective, 

and cannot cope with large-scale production and modern fruit processing. Therefore, it is necessary to explore 

a fast and nondestructive method for determining the ripeness of Cerasus Humilis fruit to improve the market 

value and consumer satisfaction. 

 In recent years, hyperspectral imaging technology, a fusion technology integrating digital image and 

spectral technology, can provide spatial and spectral information of the target at the same time, and has been 

widely used in the detection of agricultural product maturity (Yuan et al., 2021). Shao et al. (2020) used 

hyperspectral imaging technology (400~1000 nm) to analyze the maturity of Feicheng peach (green ripening 

stage, color changing stage).  
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 The sequential forward selection (SFS) algorithm was adopted to extract three characteristic 

wavelengths to establish an artificial neural network (ANN) prediction model. The total prediction accuracy of 

the model was 98.3%. Li Lili et al. (2019) used hyperspectral imaging technology (420~1000 nm) to identify 

Cerasus Humilis fruits with different maturity (immature, semi-mature, mature and over-mature). And the 

results showed that the established SPA-PLS model had the highest discrimination accuracy, and the accuracy 

reached 91.25%. Pu et al. (2019) used the hyperspectral imaging system to collect hyperspectral images of 

bananas at different maturity stages (the 2, 4 and 6 stages), and adopted regression coefficient method to 

choose characteristic wavelengths to establish three classification models (K-nearest neighbor algorithm, 

SIMCA, PLS-DA). Among them, the accuracy of PLS-DA model was the best (93.3%). Zhang et al. (2020) 

used the 300~1100 nm hyperspectral imaging system to divide bagged red Fuji apples into three maturity 

levels (immature, harvest maturity, edible maturity) with starch index as the maturity index, and established 

five discrimination models. The research showed that the RF-SPA-LS-SVM model had the highest 

classification accuracy (89.05%) for prediction sets. Zou et al. (2019) used hyperspectral imaging technology 

to classify peanuts with different maturity (immature and mature), and established multiple discrimination 

models (PLS-DA, LS-SVM). The results showed that LS-SVM model had the highest discrimination accuracy 

for immature and mature peanuts, which were 92.36% and 99.43% respectively. The above studies show that 

it is feasible to use hyperspectral imaging technology to identify fruit maturity. However, no researchers have 

used hyperspectral imaging to identify the maturity of Cerasus Humilis fruit in relevant studies. 

 In this study, the hyperspectral imaging system is used to obtain the hyperspectral image of the “Nongda 

No. 6” Cerasus humilis fruit samples in the range of 900~1700 nm, and extract the average spectral data of 

the region of interest (ROI). The effects of five spectral pretreatment methods on the performance of PLS 

model were analyzed and the optimal pretreatment method was determined. The competitive adaptive 

reweighted algorithm (CARS), successive projection algorithm (SPA), and random frog (RF) were used to 

extract the characteristic wavelength, and the partial least squares-discriminant analysis (PLS-DA) and least 

squares-support vector machine (LS-SVM) discriminant models were established based on the characteristic 

wavelength, so as to provide a theoretical basis for further development of online sorting equipment of Cerasus 

Humilis fruits in different mature periods. 

 
MATERIALS AND METHODS 

Sample Collection 

 In this study, fresh edible Cerasus Humilis fruit (Nongda No. 6) was collected from a Cerasus Humilis 

planting demonstration base in the agricultural high-tech industry demonstration zone (112°29'E, 37°23'N) of 

Jinzhong, China, July 30, 2020. After harvest, the sample is placed in a cryogenic crisper, transported to the 

laboratory on the same day as the sampling, to avoid the effects of individual differences on the testing results. 

A total of 320 samples (include 66 color turning stages, 90 coloring stages, 84 maturity stages, and 80 

full ripe stages) without defects, bruises, scar, and relatively uniform shape were selected. Finally, the selected 

samples were numbered, rinsed, wiped. Prior to hyperspectral image acquisition, the samples were taken out 

and placed in a laboratory (25°C, 40% relative humidity) for 2h to avoid the effect of temperature on the 

spectrum and the fruit quality. Samples of Cerasus Humilis fruit at four maturity levels (immaturity, white 

maturity, early-red maturity, half-red maturity, and full maturity) are shown in Fig.1.  

 The SPXY algorithm (Galvao et al., 2005) was used to divide the Cerasus Humilis fruit dataset into a 

calibration set (240 samples) and a prediction set (80 samples) with a ratio of 3:1. 

    

 

Fig. 1 - Samples of Cerasus Humilis fruit at different maturity stages 

a) Color turning stage; b) Coloring stages; c) Maturity stage; d) Full ripe stage 
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Spectrum Acquisition  

 In this study, a hyperspectral imaging system (GaiaSorter, Zolix Instruments Co. Ltd., China) was used 

to collect spectral and image information. The spectral range is 895~1700 nm and the spectral resolution is 5 

nm, and the number of pixels is 320×256. The entire system consists of a high-spectrum spectrometer, CCD 

camera, four 250 W halogen lamps, a precision mobile platform controlled by stepper motors, and a computer, 

as shown in Fig.2. Among them, four 250 W halogen lamps were placed as a lighting device at a 45°angle. 

 

Fig. 2 - The schematic diagram of hyperspectral imaging system 

 
 To ensure clear images, avoid information oversaturation and imaging distortion. Based on the system 

configuration, the equatorial region of Cerasus humilis fruit was facing the camera, and the camera was fixed 

at a distance of 280 mm from the lens to the samples’ surface. Each Cerasus humilis fruit was placed on the 

sample table to be scanned at an 8 mm/s constant speed line by line using 150 ms exposure time to create a 

hyperspectral image. Due to the uneven distribution of light intensity and the presence of dark currents in the 

sensor, the resulting image had high noise. Therefore, the raw images were corrected according to the 

following equation: 

%100
−

−
=

BW

BR
I                                                               (1) 

where: 

 I is the corrected image;  

 R  is the original image;  

 B  is the image of the blackboard correction;  

 W is the image of the whiteboard correction. 

Discriminant Model 

 Partial least squares-discriminant analysis (PLS-DA) is a multivariate statistical analysis method 

combining partial least square method and linear discriminant analysis method. The optimal number of 

principal components is obtained by cross validation, and then linear discriminant analysis is carried out to 

solve the multicollinearity problem of independent variables in regression analysis. In this study, principal 

components were selected according to the interaction test, the maximum number of principal components 

was set as 10, and 10-fold interaction test was performed. 

 Least squares-support vector machine (LS-SVM) is a multivariate statistical method. Its algorithm is 

the least squares method. Its principle is structural risk minimization, which can effectively implement data 

classification and processing. It also reduces training time and simplifies computational complexity. In this 

study, the optimal characteristic wavelength is used as the input, and four maturity categories are used as the 

output parameters. After optimization, the optimal regular parameter (γ) and square bandwidth (σ2) were 

obtained. 

Software Tools 
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 In this study, ENVI5.0 (Version 5.0, ITT Visual Information Solutions, Boulder, USA) software was 

used to analyze hyperspectral images. The Unscrambler X10.1’’ (CAMO PROCESS AS, Oslo, Norway) and 

MATLAB R2009a software (The Mathworks, Inc., Natick, MA, USA) were used to process and analyze data. 

In addition, Origin Pro 8.0 SR0 (Origin Lab Corporation, Northampton, MA, USA) software was used to design 

graphs. 

 

RESULTS AND DISCUSSION 

Spectral Characteristics Analyses 

 The ROI with 40×60 pixels was manually extracted from hyperspectral image of equatorial region of 

each sample. The spectra of each pixel within the ROI were extracted, and then the mean spectrum was 

calculated, as shown in Fig. 3a. Meanwhile, the average spectra of various samples were obtained, as shown 

in Fig. 3b. Because of the low signal-to-noise ratios and large noise at 895~945 nm, 1675~1700 nm, the 

wavelength range of 945~1675 nm (230 bands) were selected for further analysis in this study. 

 

 

    
Fig. 3 - Raw reflectance spectra of Cerasus Humilis fruit samples at different maturity 

 

 
 As shown in Fig. 3a, spectra of samples at different maturity stages have some crossover and overlap, 

but the trend of spectral curves is very similar. It can be seen from Fig. 3a that the spectra have obvious 

absorption peaks at 980, 1195 and 1460 nm. The absorption peak at around 980 nm and 1195 nm were related 

to the second overtone of O-H stretching (Shinzawa et al., 2011) and the second overtone of C-H stretching, 

respectively (Liu et al., 2010). There is an obvious absorption peak near 1460 nm, which is related to the first 

order frequency doubling of the stretching vibration of the O-H bond (Osborne et al., 2006). It can be seen 

from Fig. 3b that the spectral curves at different maturity stages (color turning stage, coloring stage, maturity 

stage, and full ripe stage) have similar trends, but the spectral reflectance will vary greatly with the extension 

of the sample maturity stage, and the spectral reflectance of the sample at maturity stage is the lowest. In the 

range of 1180~1300 nm, the fruit reflectance varied greatly, and tended to decrease gradually, which may be 

related to the changes of the contents of chemical components in the fruits of Cerasus Humilis at different 

maturity stages. 

Spectral Pretreatment 

 Selecting an appropriate spectral preprocessing method can eliminate or weaken the influence of non-

target factors on the original spectral information, and improve the signal-to-noise ratio and the detection 

accuracy and stability of the model (Chi et al., 2021). In the present work, four spectral pre-processing 

methods, including standard normal variate (SNV), multiplicative scatter correction (MSC), baseline correction 

(BC), and de-trending (De-T) were used to preprocess the raw spectral data. The PLS prediction models were 

established respectively, and the optimal pretreatment methods were compared and selected. The prediction 

results are shown in Table 1. 
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Table 1  

Prediction results of PLS models built by different preprocessing methods 

Pretreatment 
methods 

Calibration set Prediction set 

Rc RMSEC Rp RMSEP 

Original spectra 0.87 0.51 0.88 0.50 

SNV 0.76 0.68 0.85 0.54 

MSC 0.85 0.58 0.85 0.57 

BC 0.88 0.49 0.89 0.48 

De-T 0.86 0.52 0.88 0.51 

 

 It can be seen from Table 1 that compared with the predicted results of the PLS model established by 

the original spectrum without pretreatment, the predicted results of the PLS model established by the three 

pretreatment methods (SNV, MSC, De-T) were poor. The PLS model established after BC method 

preprocessing has the highest prediction accuracy, with the correlation coefficient (Rc) of the correction set 

and the correlation coefficient (Rp) of the prediction set being 0.88 and 0.89, respectively. The root mean 

square error (RMSEC) of the correction set and the mean square error (RMSEP) of the prediction set being 

0.49 and 0.48, respectively, both of which are relatively low and close. Therefore, the spectral data processed 

by BC were used for further analyses in this study. 

Effective Wavelength Selection 

Competitive Adaptive Reweighted Sampling (CARS) 

 The CARS algorithm is a feature information filtering method that has been widely used in recent years. 

It is based on Darwin's theory of evolution and follows the “survival of the fittest” principle. In the CARS 

procedure, the absolute coefficients of variables in the PLS model are set as an index for evaluating the 

importance of each variable and the wavelengths with large absolute coefficients were regarded as optimal 

wavelengths (Wang et al., 2021).  

 In the process of CARS, the number of Monte Carlo sampling runs was set to 50 and the final variable 

number to be selected was determined by 5-fold cross validation. Fig. 4a, b and c show the trends of the 

number of sampled variables, RMSECV values, and regression coefficient paths for each variable as the 

number of Monte Carlo samples increases for each CARS run, respectively. From Fig. 4a, it can be seen that 

the number of wavelengths gradually decreases and finally plateaus with the gradual increase of the number 

of sampling runs, which verifies the fast selection phase and refined selection phase in the wavelength 

screening process. Fig. 4b showed the changing trends of RMSECV with sampling runs from each sampling. 

When the number of sampling runs gradually increases to 36, the cross-validation RMSECV gradually 

decreases and then shows a trend of increasing. When the RMSECV gradually becomes smaller, it means 

that the useless information in the spectral information was eliminated, when the RMSECV increases, it means 

that the useful information of the spectral information was eliminated. In Fig. 4c, each curve represents the 

regression coefficients at different sampling runs for each variable, the position of the vertical line marked with 

"*" in the Fig. 4c indicates that the RMSECV reaches a minimum value of 0.51 when the number of sampling 

runs was 36. Finally, the number of selected wavelengths was 14 from 230 wavelengths, these variables were 

960, 1027, 1091, 1151, 1161, 1164, 1167, 1173, 1355, 1371, 1374, 1380, 1625, and 1650 nm, respectively. 

 
a) 
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b) 

 
c) 

Fig. 4 - Key variables selection results of CARS 

 

Successive Projection Algorithm (SPA) 

 SPA is a forward selection method proposed by Araújo (Araújo et al., 2001). This algorithm is to avoid 

the overlap of effective information in spectral variables and eliminate the collinearity between them through 

multiple variable information iterations, find a group of characteristic variables with low redundant information, 

minimum collinearity and representativeness, which can represent most spectral information of tested 

samples, avoid the overlap of information to the greatest extent, and improve the modeling speed. 

 The SPA algorithm is used to extract the characteristic wavelengths from the pre-processed full 

spectrum data. In this study, the parameters of the minimum and maximum numbers of variables selected in 

the SPA procedure were 1 and 30, respectively. Fig. 5 shows the distribution of root mean square errors 

(RMSE) for the different number of variables chosen by the SPA algorithm. When the 19 variables were 

selected (marked as open blue square), the RMSEP reached its optimal value (with RMSE=0.46). Fig. 6 shows 

the selected 19 variables, the nineteen characteristic wave-lengths were 1609, 1377, 1113, 1580, 1068, 1275, 

1355, 1212, 1641, 1672, 1141, 953, 1323, 957, 1399, 1488, 1669, 1676, and 1460 nm, respectively. 

Accounting for 3.91% of the total wavelength, the importance of the wavelength decreases in turn. 

 

Fig. 5 - The relationship between wave number and root mean square error 

 



Vol. 70, No. 2 / 2023  INMATEH - Agricultural Engineering 

 

 113  

 

Fig. 6 - Feature wavelength extracted by SPA 

Random Frog (RF) 

 Random Frog (RF) is a mathematically simple method with high computational efficiency. It is similar 

to reversible jump Markov chain Monte Carlo algorithm, which can iterate multidimensional data variables and 

calculate the weight value of each variable. The higher the value, the greater the probability of being selected, 

and the more important the corresponding wavelength (Yan et al., 2020). 

 In order to reduce the influence of random factors, the algorithm needs to run several times and 

calculate the results. In this study, the frequency of RF algorithm was set as 2000, and when RMSECV reached 

the minimum value of 0.48, the threshold was selected as 0.31. The process of using RF algorithm to select 

characteristic wavelength was shown in Fig. 7. It can be seen from Fig. 7 that the band selection probability 

ranges from 0.0 to 0.8. Only a few variables have prominent selection probability peaks, which can be identified 

as characteristic wavelength. The first 10 data coordinate points with large probability values are (133,0.7525), 

(134,0.4245), (121,0.4135), (151,0.3670), (97,0.3495), (182,0.3460), (52,0.3290), (62,0.3175), (8,0.3135), 

(53,0.3075), respectively, arranged in descending order. The corresponding characteristic wavelengths are 

1367, 1371, 1329,1425, 1253, 1523, 1110, 1142, 969, and 1113 nm respectively, accounting for 4.35% of the 

original wavelength. 

 

Fig. 7 - Feature wavelength extracted by RF 

Establishment of a Maturity Model Using the Feature Wavelengths  
 The PLS-DA and LS-SVM discrimination models were established by assigning the samples of 

different maturity periods (color turning stage, coloring stage, maturity stage, and full ripe stage) with values of 

1, 2, 3, and 4, respectively. 

 When the established discriminant model is used to discriminate samples at different mature stages, 

if the correct prediction value of color turning stage is within the threshold value [0.5, 1.5], it is determined that 

the prediction category is consistent with the assumed category, that is, the color turning stage. By analogy, 

the threshold range of the coloring stage is (1.5, 2.5], the maturity stage is (2.5, 3.5], and the full ripe stage is 

(3.5, 4.5]. Based on the discriminant results of different models of characteristic wavelength analysis, the most 

effective method of extracting characteristic wavelength and modeling method are determined. Table 2 shows 

the discrimination results of PLS-DA and LS-SVM models based on the characteristic wavelengths of Cerasus 

Humilis in different maturity periods. 

javascript:;
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Table 2  

 
Discriminant results of models by the characteristic wavelength of Cerasus Humilis fruit maturity 

Model 

Variable selection 
methods 

 (No. of variables) 

Calibration set Prediction set 

Number of 
misjudgments 

Discriminant 
accuracy (%) 

Number of 
misjudgments 

Discriminant 
accuracy (%) 

PLS-DA 

Original spectra（230） 76 68.33 27 66.25 

SPA（19） 68 71.67 20 75.00 

CARS（14） 70 70.83 25 68.75 

RF（10） 93 61.25 36 55.00 

LS-SVM 

Original spectra（230） 37 84.58 12 85.00 

SPA（19） 36 85.00 10 87.50 

CARS（14） 41 82.92 14 82.50 

RF（10） 68 71.67 27 66.25 

 
 As can be seen from Table 2, among the PLS-DA discriminant models, the RF-PLS-DA model has the 

worst discriminant results for Cerasus Humilis fruits at different maturity stages, and the accuracy of correction 

set and prediction set are 61.25% and 55.00%, respectively. Compared with the original spectra data, the 

discriminant results of the model based on the characteristic wavelengths extracted by SPA and CARS are 

slightly improved by 8.75% and 2.50% respectively. Among them, SPA-PLS-DA model has the best 

discrimination result for Cerasus Humilis fruits at different maturity stages. The number of selected 

characteristic wavelengths accounts for 8.26% of the total spectrum data, and the discrimination accuracy of 

correction set and prediction set are 71.67% and 75.00%, respectively. 

 In the LS-SVM discriminant model, compared with the discriminant results of the model established by 

the original spectrum, the model established by using the characteristic wavelength extracted by CARS and 

RF methods has significantly reduced the discriminant results of the prediction set, while the prediction set of 

RF-LS-SVM model has the lowest discriminant accuracy, with a value of 66.25%. It shows that the effective 

information in the original spectral data is eliminated in the process of extracting characteristic wavelength by 

RF algorithm. By comprehensive comparison, when γ=6.17×103, σ2=71.21, SPA-LS-SVM model has the best 

discriminative results for plum fruit at different maturity stages. The number of selected characteristic 

wavelengths only accounts for 8.26% of the whole spectrum data, and the discriminative accuracy of correction 

set and prediction set are 85.00% and 87.50%, respectively. 

 By comparing the discriminant accuracy of the optimal linear model and the optimal nonlinear model, it 

can be seen that the SPA-LS-SVM model has the highest discriminant accuracy. Singh et al. (2021) research 

on barley seed varieties recognition based on hyperspectral imaging technology combined with convolutional 

neural network, and discrimination accuracy of the nonlinear convolutional neural network model is superior to 

that of the linear model, which is consistent with the conclusion of this study. In this study, the accuracy of the 

optimal discriminant model for the prediction set (87.50%) was slightly lower than that of Li et al., (2019), 

(91.25%) and Liu et al., (2022), (90.12%). This may be due to the different research objects, which leads to 

the deviation of the hyperspectral image information collected. In addition, the 19 characteristic wavelengths 

extracted by SPA algorithm in this study are consistent with previous research reports (Riza et al., 2017). That 

is 967~1095 nm is related to the overtone of C-H stretching, 1165~1390 nm is associated with the first overtone 

of bond O-H, and 1620~1800 nm is associated with the first overtone of bond C-H (Wang et al., 2021). It is 

further indicated that the characteristic wavelength extracted by SPA can be used as the key variable to reflect 

the different ripening stages of Cerasus Humilis fruit, which can simplify the model and improve the accuracy 

of discriminant. 

 Fig. 8 shows the discriminant results of the prediction set of 4 types of Cerasus Humilis fruits based on 

the optimal SPA-LS-SVM model. Among them, 3 Cerasus Humilis fruits in the color turning stage were 

misjudged as the coloring stage, 4 Cerasus Humilis fruits in the coloring stage were misjudged as the color 

turning stage, and 3 Cerasus Humilis fruits in the maturity stage were misjudged as the coloring stage.  
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 This may be due to the fact that a few Cerasus Humilis fruits in the color turning stage, the coloring 

stage and the maturity stage had no obvious color changes and the absorption spectrum was consistent, which 

was easy to cause confusion. 

 

Fig. 8 - The discriminant result of SPA-LS-SVM model 

CONCLUSIONS 

 In this study, hyperspectral imaging technology was used to nondestructive discriminant research of 

Cerasus Humilis fruit at different maturity stages (color turning stage, coloring stage, maturity stage, and 

full ripe stage), the effects of different spectral preprocessing methods and characteristic wavelength 

extraction methods on the accuracy of the model were compared. The main research conclusions are as 

follows: 

 (1) Based on the spectral information in the range of 945~1675 nm, the PLS prediction models 

established by four pretreatment methods (SNV, MSC, BC, De-T) were compared and analyzed. The results 

showed that the PLS model pretreated by BC method was the best, with Rc and RMSEC of 0.88 and 0.49, Rp 

and RMSEP of 0.89 and 0.48, respectively. 

 (2) Based on the original spectrum pretreated by BC method, the characteristic wavelength was 

extracted by CARS, SPA and RF algorithms, and the PLS-DA and LS-SVM discriminative models were 

established respectively. Comparative analysis showed that the SPA-LS-SVM model had the best discriminant 

results for different maturity stages of Cerasus Humilis fruit (γ=6.17×103 and σ2=71.21). The number of 

selected characteristic wavelengths only accounted for 8.26% of the full spectrum, and the discriminant 

accuracy of correction set and prediction set were 85.00% and 87.50%, respectively. This study provides a 

theoretical basis for rapid and non-destructive detection of the ripeness of Cerasus Humilis fruits. 
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