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ABSTRACT  

In agricultural operation scenarios, the diversity of farmland terrain, crops and other forms, as well as uncertain 

factors such as weather changes and crop growth during agricultural operation, can have an impact on the 

construction of high-precision maps. To address these challenges and analyze operational scenarios based 

on the characteristics of agricultural scenarios, this paper proposes a point cloud map construction algorithm 

for plant point removal and locatability estimation. Based on the existing Simultaneous Localization and 

Mapping (SLAM) framework, plant point removal and locatability estimation are improved. Firstly, Red, Green, 

Blue (RGB) images and Near Infrared (NIR) images are fused to identify and remove plant point clouds, 

preserving effective inter frame matching information, reducing the impact of dynamic points on inter frame 

matching, and achieving high front-end motion estimation accuracy. Then, the localization estimation method 

based on learning is used to determine the motion estimation status and determine whether to execute the 

backend optimization algorithm. Finally, the back-end optimization algorithm based on Factor graph is 

designed, and the Factor graph, constraint relationship and optimization function are constructed to optimize 

the pose of all frames. The optimized map construction algorithm reduces the re projection errors between 

field roads, paths, and crop rows by 10.27%, 20.76%, and 14.36% compared to before optimization. To verify 

the actual operational effectiveness of the point cloud map construction algorithm, the hardware part of the 

multi-sensor information collection system was designed, and sensor internal and external parameter 

calibration were also carried out. A map information collection vehicle was built and field experiments were 

conducted. The results showed that the positioning error of the point cloud map construction method proposed 

in this paper is less than 0.5°, and the cumulative error of 30 m translation is less than 12 cm, which meets the 

actual operational requirements. 

 

摘要 

在农业作业场景中，农田地形、作物等形态的多样性，以及农业作业过程中的天气变化、作物生长等不确定因

素，都会对高精度地图的构建产生影响。为了应对这些挑战，并根据农业场景的特点分析操作场景，本文提出

了一种用于植物点去除和定位估计的点云地图构建算法。在现有 SLAM框架的基础上，对植物点去除和可定位

性估计进行了改进。首先，将 RGB 图像和近红外图像融合，识别和去除植物点云，保留了有效的帧间匹配信

息，减少了动态点对帧间匹配的影响，实现了较高的前端运动估计精度。然后，使用基于学习的局部估计方法

来确定运动估计状态，并确定是否执行后端优化算法。最后，设计了基于因子图的后端优化算法，构造了因子

图、约束关系和优化函数，对所有帧的姿态进行优化。与优化前相比，优化后的地图构建算法将田间道路、路

径和作物行之间的重新投影误差分别降低了 10.27%、20.76%和 14.36%。为了验证点云地图构建算法的实际

操作有效性，设计了多传感器信息采集系统的硬件部分，并进行了传感器内外参数校准。建造了地图信息采集

车，并进行了野外试验。结果表明，本文提出的点云地图构建方法定位误差小于 0.5°，30m平移累积误差小于

12cm，满足实际操作要求。 

 

INTRODUCTION 

The need for unmanned and refined agriculture has promoted the development of intelligent 

technologies such as driverless, robots and sensors (Kim et al., 2022). The use of unmanned technology in 

agricultural fields requires high-precision maps to provide vehicles with relevant information about the 
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environment and this information helps self-driving vehicles perceive their surroundings and make navigation 

decisions. The highly unstructured nature of agricultural scenarios and the complexity of semantic information 

bring great challenges to the construction of high-precision maps. To cope with these challenges, agricultural 

high-precision point cloud map construction is needed, i.e., to construct a map containing environmental 

information through multiple point cloud datasets. The point cloud data in the map can provide useful semantic 

information for robots or other intelligent devices to support their autonomous localization and navigation in 

unknown environments (Qi et al., 2017; Wang et al., 2022). 

Numerous scholars have carried out research in various aspects of point cloud map construction. Ji et 

al. developed a LiDAR-based point cloud acquisition system for farmland environment (Ji et al., 2019), aiming 

to realize the stable and reliable information acquisition of farmland environment point cloud and positional 

attitude of farm machinery. The system employs multi-sensor data acquisition software to achieve accurate 

and consistent global point cloud data acquisition. Chris et al. proposed a methodology using high-resolution 

LiDAR point cloud data for classification and segmentation to detect linear vegetation elements in agricultural 

landscapes (Lucas et al., 2019). Due to the ground and trees are surrounded by foliage, thorns, and vines, 

and sensors often experience extreme motion, Guilherme et al. proposed an end-to-end trunk diameter 

estimation method that is based on semantic segmentation and LiDAR odometry with map building (Chen et 

al., 2020). Poor feature descriptiveness and insufficient point cloud alignment accuracy due to the lack of highly 

distinguishable high-level structures of points, lines, and surfaces, therefore, Dong et al. proposed a point 

cloud method based on rotated surface contour features for farmland surface point clouds (Dong et al., 2020). 

Aiming at the problems of highly unstructured scene and complex environment semantic information in 

the construction of high-precision point cloud semantic map for agriculture, this paper proposes a method of 

multimodal map construction based on multi-sensors. By designing a multi-sensor information acquisition 

device and proposing a point cloud map construction algorithm and a multi-modal semantic segmentation 

algorithm, high-precision point cloud semantic maps are established to provide accurate data support for 

unmanned operation of agricultural machines. 

 

MATERIALS AND METHODS 

Data Acquisition Vehicle Construction 

The overall design of the data acquisition vehicle is shown in Figure. 1, which consists of the information 

acquisition device, the modified bracket and the vehicle underpan, respectively. The Livox-mid70 non-

repeating scanning lidar, Intel RealSense D455 depth camera and MER2-507-23GM NIR near-infrared optical 

camera are used for data acquisition, respectively. The collection vehicle uses the Agile HUNTER2.0 chassis, 

which features a wheel drive system, Ackermann turning mode, and independent suspension system. This 

setup provides a reliable platform with precise control and smooth movement.  
 

 
Fig. 1 - The information collection vehicle 

 

Principle of Point Cloud Map Construction 

 
 

Fig. 2 - Process of the classic SLAM algorithm 
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The construction of a point cloud map relies heavily on the use of the SLAM (Simultaneous Localization 

and Mapping) technique (Zeng et al., 2022; Johnson et al., 1999; Li et al., 2021). Its algorithmic process is 

exemplified in Figure. 2 and is employed to achieve simultaneous localization and map construction by 

continually estimating and updating the robot movements and surroundings for independent localization and 

navigation. The key stages of the SLAM technology used during point cloud map creation encompass point 

cloud data acquisition, motion estimation, point cloud alignment, point cloud feature extraction, point cloud 

filtering and optimization, and map construction. 

During point cloud data acquisition, several sensors are employed to gather point cloud data within the 

environment and then process and fuse it to enhance the completeness of environmental information. Front-

end tracking utilizes camera acquired image frames captured during motion at distinct times to solve the 

camera position transformation between neighboring domains through feature matching. This facilitates image 

frame fusion to reconstruct the map (Tombar et al., 2010; Johnson et al., 1999). However, the estimation of 

the position at the frontend over an extended period will lead to error accumulation during the moving process, 

leading to offset phenomenon. To decrease the accumulation of mistakes, loopback detection and backend 

optimization techniques are introduced. Loopback detection aims to establish whether the same position is 

achieved again, whereas backend optimization improves the noise problem in the position estimation (Han et 

al., 2022; Han et al., 2022; Xu et al., 2022). After detecting feedback loops and optimizing the camera positions 

obtained from motion estimation, it is possible to generate globally consistent trajectories and their 

corresponding map forms. 

 

POINT CLOUD MAP CONSTRUCTION ALGORITHM 

Algorithm Framework 

 
 

Fig. 3 - Point cloud map construction algorithm framework 

 

In the frontend part of the algorithm, edge and feature points are first extracted by extracting scene 

information such as non-vegetation points (e.g. ground, obstacles and debris). Feature point matching is 

performed using the nearest neighbor method, whilst the Iterative Closest Point (ICP) algorithm estimates 

motion to determine the interframe locality matching. During the backend optimization phase is utilized the 

optimization algorithm that is rooted in factor graph (Vizzo et al., 2022; Wang et al., 2021). This optimization 

algorithm is used to enhance the position and feature points of all frames by constructing factor graph, 

constraint relationships and optimization functions, thereby improving the accuracy of the map. Following the 

generation of a high-precision 3D map, execution of the map building algorithm results in an accurate map 

being created. The complete algorithm framework is depicted in Figure 3. 

 

Plant Point Culling Based on Image Information 

This paper utilizes the Normalized Difference Vegetation Index (NDVI) to separate plant and non-plant 

regions (Ao et al., 2021; Tian et al., 2021). By combining the RGB and NIR images, a multispectral image with 

red, green, blue, and near-infrared band information can be obtained. Segregation of plant and non-plant 

regions can be accomplished through the use of the NDVI. The normalized vegetation index, calculated using 

the NIR and red bands in a multispectral image, can be expressed through Equation (1).  

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝑒 𝑑

𝑁𝐼𝑅−𝑅𝑒 𝑑
                                                               (1) 
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where NIR denotes the pixel value in the near-infrared band and Red denotes the pixel value in the red band. 

As shown in Figure 4, the non-vegetative points can be segmented by extracting non-vegetative data from the 

camera image and mapping it onto the point cloud. 

 
Fig. 4 - Plant spot removal in field experiments 

 

Learning-Based Estimation of Localizability 

Conventional algorithms may degrade, which can result in a significant deviation from the estimated bit 

position. To detect such a situation, an end-to-end method for estimating bit position is proposed. This method 

helps identify whether the conventional approach is degraded or not. 

• Mathematical modeling 

3D LIDAR point cloud scanning data is analyzed to forecast the feasibility of accomplishing localizations 

in the existing surroundings by employing scan matching methods. The LiDAR point cloud data is exploited to 

supply an approximation of localization, which is described as the identification across six degrees of freedom. 

The LiDAR point cloud data is exploited to supply an approximation of localization, which is described as the 

identification across six degrees of freedom. Abbreviations will be clarified whenever initially employed. 

𝐷𝑘 = (𝑑𝑥 , 𝑑𝑦 , 𝑑𝑧 , 𝑑𝜑 , 𝑑𝜃 , 𝑑𝜓)𝑇                                                            (2) 

𝑥, 𝑦, 𝑧 ‒ the translation coordinate; 

φ, θ, ψ ‒ the Euler angles for roll, pitch, and yaw; [˚] 

For practical purposes, the localization of orientation is considered in binary terms. Therefore, for all 𝑖 ∈

{𝑥, 𝑦, 𝑧, 𝜑, 𝜃, 𝜓}, there exists 𝑑𝑖 ∈ {0,1}, where 0 indicates successful localization and 1 indicates unsuccessful 

localization. Localization is accomplished through interframe matching of the current and previous frame point 

clouds. 

The ability to localize at time k is determined by scanning data from the current point cloud𝑠𝑘 ∈ 𝑅𝑛𝑘×3. 

Therefore, the function 𝑠𝑘 → 𝑑𝑘 can be approximated �̃�𝑘(𝛩, 𝑠𝑘), where 𝛩 ∈ 𝑅𝑝 is the P trainable parameters in 

the network. These parameters are obtained by minimizing the supervised classification loss 

argmin
𝜃

(�̃�(𝛩, 𝑆), 𝑇) in the training set S, which includes the point cloud frames 𝑠𝑖 ∈ 𝑆 and corresponding labels 

𝑡𝑖 ∈ 𝑇.  

• Training set generation: sampling and alignment 

Generating the data for training occurs in two stages: initially, the alignment error ek is calculated; 

subsequently, this error is mapped to dk through the implementation of a thresholding operation. 

• Alignment Error 

Obtain a set of child point clouds adjacent to the parent point cloud 𝑠𝑝 through Monte Carlo sampling to 

calculate the expected alignment error. Align the child point clouds with the parent point cloud to obtain the 

average alignment residuals of the point cloud distribution. The mean absolute error is then calculated to obtain 

the alignment error 𝑒𝑝 of the 𝑠𝑝. 

A group of M sub-point clouds 𝑠𝑝 are randomly sampled using Monte Carlo within the vicinity of 𝑠𝑐,𝑗 ∈

{1, . . . , 𝑀}. To determine its positional attitude 𝑇𝑝,𝑐,𝑗  relative to the main point cloud, each sub-point cloud 

requires six perturbations in the direction 𝑖 ∈ {𝑥, 𝑦, 𝑧, 𝜑, 𝜃, 𝜓}  using a Gaussian function 𝑁(0, 𝜎2𝑖) . The 

alignment of each sub-point cloud with the main point cloud is achieved using the ICP algorithm with point-to-

plane implementation, resulting in the transform matrix 𝑇𝑝,𝑐,𝑗. The sub-point cloud's alignment quality to the 

parent point cloud is assessed by computing the mean absolute error between each sub-point cloud and its 

aligned point cloud on the parent point cloud. Subsequently, the mean absolute error of all child point clouds 

is averaged to obtain the alignment error 𝑒𝑝 of the parent point cloud 𝑠𝑝. 

𝑒𝑝 =
1

𝑀
∑ |𝛾(�̃�𝑝,𝑐,𝑗

−1
− 𝑇𝑝,𝑐,𝑗)|𝑀

𝑗=1                                                            (3) 
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The alignment error γ for each sub point cloud is determined by aligning it with the parent point cloud 

using ICP. The 𝑇𝑝,𝑐,𝑗 attitude of each sub point cloud is converted to �̃�𝑝,𝑐,𝑗 in relation to the parent point cloud, 

as indicated in Equation (3), and is then utilized as input for the ICP to compute the alignment error γ. 

• Localizability estimation 

Once the 6D alignment error has been calculated, it must be compared with a preset threshold to 

determine whether localization can be successful in a particular direction. If the alignment error exceeds the 

preset threshold, positioning in that direction is considered to have failed and the corresponding Localizability 

label is set to 1. Conversely, it is set to 0. Positioning is considered successful if the translation error is less 

than 10 cm and the rotation error is less than 2°.  

 

Frontend position estimation 

Frontend pose estimation consists of three stages: feature extraction, feature matching and motion 

estimation. 

• Feature extraction 

A 3D curvature based feature extraction method is used to extract points with distinct geometric features. 

The point cloud is meshed and divided into a number of small cubes, and the center point pi within each small 

cube is computed. For each point pi, its normal vector ni  is computed. the curvature tensor Ci  of each point pi 

is computed, where Ci  is computed from the normal vectors of all points in its neighborhood, and the calculation 

formula is as Equation (4). 

𝐶𝑖 =
1

𝑁
∑ (𝑛𝑗 − 𝑛𝑖)(𝑛𝑗 − 𝑛𝑖)

𝑇𝑁
𝑗=1                                                       (4) 

N ‒ the number of points in the neighborhood of pi; 

nj ‒ the normal vector of the jth neighborhood point. 

For every 𝑝𝑖 , determine the eigenvalues 𝜆1 and 𝜆2 of its curvature. These eigenvalues are accessible 

from the eigenequations of the curvature tensor 𝐶𝑖  as shown in Equation (5). In the equation for the unit matrix, 

the symbol I represents the unit matrix. 

det(𝐶𝑖 − 𝜆𝐼) = 0                                                                  (5) 

To calculate the curvature index 𝐾𝑖  of a point 𝑝𝑖, 𝜆1 and 𝜆2 are used in the following manner.  

𝐾𝑖 =
𝜆𝑖

𝜆1−𝜆2
                                                                        (6) 

By defining 𝐾𝑒 and 𝐾𝑓 thresholds, it is possible to filter the feature information contained in the point 

cloud. This filtering process includes both edge points and feature points. 

𝑓(𝑘) = {

𝐸𝑑𝑔𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝐾𝑖 > 𝐾𝑒

𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝐾𝑓 < 𝐾𝑖 < 𝐾𝑒

𝑁𝑜𝑖𝑠𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝑜𝑡ℎ𝑒𝑟
                                            (7) 

• Feature match 

The matching of feature points utilizes the nearest neighbor algorithm. 𝑝𝑖
1 in the first frame point cloud 

represents the ith feature point and 𝑝𝑗
2 in the second frame refers to the jth feature point. The Euclidean distance 

serves as the distance metric between these points, and it is computed by measuring the distance between 

the two point cloud frames, as illustrated in Equation (8). 

𝑑𝑖,𝑗 = |𝑝𝑖
1 − 𝑝𝑗

2|                                                                      (8) 

where |⋅| denotes the Euclidean paradigm. Find the feature point 𝑝𝑖
1 that is closest to 𝑝𝑖

2 in the second frame 

of the point cloud.  

𝑘 = argmin𝑗𝑑𝑖,𝑗                                                                     (9) 

If the square of 𝑝𝑘
2 is too distant from 𝑝𝑖

2, it will be removed. The ultimate matching of feature points 

obtained can be presented as a set 𝑀 = {(𝑖, 𝑘)|𝑖 = 1, . . . , 𝑛1, 𝑘 = 1, . . . , 𝑛2}, where (𝑖, 𝑘) indicates that the first 

frame point cloud's ith feature point has been successfully matched with the second frame point cloud's kth 

feature point. 

• Motion estimation 

After preprocessing the point cloud frames through feature extraction, dynamic objects are excluded, 

and static point features are simultaneously acquired. These characteristics facilitate interframe matching with 

ICP algorithm, leading to improved results by removing dynamic objects and higher efficacy for real-time 

applications. 
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Assume that frame point clouds P and Q are given, and let M be the set of feature points obtained by 

feature matching. The objective of the ICP algorithm is to transform point cloud P to Q in the same coordinate 

system. Define the transformation matrix T as shown in Equation (10), which transforms the point cloud P into 

the coordinate system. 

𝑃′ = 𝑇𝑃                                                                         (10) 

P' ‒ the transformed point cloud P. 

The objective of the ICP algorithm is to minimize the distance between P' and Q by iteratively refining 

the transformation matrix T. The average distance between P' and Q serves as the basis for the ICP algorithm. 

The least squares method is utilized to solve T such that the average distance between P' and Q is minimized. 

Technical term abbreviations are explained upon their first usage. The equation used to calculate the 

transformation matrix T is as follows: 

𝑇 = (𝑄𝑀
𝑇 𝑃𝑀)𝑇(𝑄𝑀

𝑇 𝑃𝑀)−1                                                            (11) 

𝑄𝑀, 𝑃𝑀 ‒ the feature point sets after feature matching in point clouds Q and P, respectively; 

𝑄𝑀
𝑇 𝑃𝑀 ‒ the correspondence between feature points; 

𝑄𝑀
𝑇 𝑃𝑀 ‒ the covariance matrix between feature points. 

The optimal rigid body transformation matrix 𝑇 between point clouds 𝑃 and 𝑄 is obtained by solving the 

least squares solution.  

Back-end optimization 

The graph optimization algorithm is a highly effective back-end optimization approach for the issue of 

creating precise point cloud maps utilizing LiDAR in agricultural settings. This approach involves modeling 

successive frames of LiDAR-obtained point clouds and incorporating landmark extraction from point cloud 

frames where localization fails, thereby constraining pose estimation. In the factor graph represented in Figure 

5, nodes portray each frame replete with landmarks, while edges depict the constraint relationships between 

them. The nodes symbolize the state variables of the LiDAR point cloud frames and landmarks. 

 
Fig. 5 - Factor diagram 

 

The motion constraint relationship between neighboring frames and the previous frame of landmarks is 

established through the motion relationship. Equation (12) illustrates the motion constraint relation between 

neighboring frames, where 𝑇𝑖.𝑗 represents the motion relation between frame i and frame j and 𝑇𝑘 represents 

the motion relation between the signpost and frame k.  

𝑧𝑖,𝑗 = [
𝑅𝑖,𝑗 𝑡𝑖,𝑗

0𝑇 1
] = [

𝑇𝑖,𝑗 0

0𝑇 1
]                                                              (12) 

where the rotation and translation of the ith frame with respect to the jth frame are represented by 𝑅𝑘,𝑖 and 𝑡𝑖,𝑗, 

respectively. Additionally, the bit-position transformation matrix of the ith frame with respect to the jth frame is 

denoted as 𝑇𝑖,𝑗. Similarly, the motion relationship between the road sign and the first three frames can be 

expressed in the same manner as shown in Equation (13), where 𝑅𝑘,𝑖 and 𝑡𝑘,𝑗 are the rotation and translation 

of the roadmap with respect to frame i, respectively, and 𝑇𝑘 is the bit-pose transformation matrix of the roadmap.  

𝑧𝑘,𝑗 = [
𝑅𝑘,𝑖 𝑡𝑘,𝑖

0𝑇 1
] = [

𝑇𝑘 0

0𝑇 1
]                                                              (13) 

With this factor graph, a function to be optimized is defined that represents the state of each node as a 

vector and optimizes the minimization error over all constraint relations. This optimization problem can be 

expressed as minimizing the objective function 𝑓(𝑥) as follow:  

𝑓(𝑥) = ∑ ∑ 𝑒𝑖𝑗
𝑘 (𝑥)𝑇

𝑖,𝑗∈𝑁𝑘
𝑁
𝑘=1 𝛺𝑖𝑗

𝑘 𝑒𝑖𝑗
𝑘 (𝑥) + ∑ ∑ 𝑒𝑖𝑗

𝑚(𝑥)𝑇𝛺𝑖𝑗
𝑚𝑒𝑖𝑗

𝑚(𝑥)𝑖,𝑗∈𝑁𝑚
𝑀
𝑚=1              (14) 

Nk ‒ the set of the kth node and its adjacent nodes; 

Nm ‒ the set of the mth signpost and its associated nodes; 

𝑒𝑖𝑗
𝑘 (𝑥), 𝑒𝑖𝑗

𝑚(𝑥) ‒ the error vectors between nodes i and j; 

𝛺𝑖𝑗
𝑘 , 𝛺𝑖𝑗

𝑚 ‒ the corresponding information matrices. 
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Analysis of point cloud map construction algorithms 

To assess the dependability of the point cloud mapping algorithm put forward in this paper, front-end 

position estimation comparison experiments and back-end optimization comparison experiments were 

conducted on field roads, paths, and crop rows. The algorithm's performance is evaluated using the 

reprojection error as the index, where a smaller error indicates a position estimation that is closer to the actual 

position and hence a higher accuracy.  

The reprojection error is calculated using the following formula: 

𝑒𝑟𝑒𝑝𝑟𝑜𝑗 =
1

𝑛
∑

|𝑝𝑖
′−𝑝𝑖|

2

√𝑤2+ℎ
2

𝑛
𝑖=1                                                          (15) 

𝑝𝑖 ‒ the location of the ith point in the actual world; 

𝑝𝑖
′ ‒ the position of the reprojected point; 

w, h ‒ the dimensions of the image; 

n ‒ the count of points within the point cloud. 

 

• Analysis of point cloud map construction algorithms 

To evaluate the effectiveness of the Plant Point Rejection method in estimating motion, this experiment 

compares it with the ground extraction-based algorithm. The positioning accuracies of the motion estimation 

method based on ground extraction and the method based on plant point rejection are compared in three 

scenarios: a large field road, a small field road and a crop row. This is done by comparing the reprojection 

errors of both methods.  

Figure 6 shows the accuracy control plot of the experiments. The plant point culling method (A) has a 

significantly reduced reprojection error compared to the ground extraction-based method (B) for the three 

experimental scenarios (1, 2, 3) by 10.27%, 20.76% and 14.36% respectively. This suggests that the method 

based on plant point culling is more precise and reliable in motion estimation. 

The experiments simulated different pavement conditions such as flat pavement, raised pavement and 

pothole pavement. The results show that the vegetation point rejection-based method is better able to adapt 

to the variations of different pavement conditions with greater robustness and reliability than the ground 

extraction-based method. This is because the method is better able to remove non-ground points, including 

raised objects and low-lying areas with large height variations.  

 

 
 

Fig. 6 - Comparison of motion estimation accuracy 

 

•  Experiment of back-end optimization comparison 

To evaluate the effectiveness of the loanability estimation inspired back-end optimization algorithm, this 

experiment compares it with the distance and time based back-end optimization algorithm. The sensor data 

were collected in three scenarios: field road, field path and crop row, and the collected data were fed into the 

loanability estimation inspired back-end optimization algorithm and the distance and time based back-end 

optimization algorithm respectively for processing, and their accuracy and robustness were compared by 

comparing the reprojection errors of the two methods. 

The experimental results showed that the reprojection error of the loanability estimation-inspired back-end 

optimization compared to the distance and time-inspired back-end optimization was reduced by 19.3%, 

15.53% and 10.95% for three scenarios: large field roads, small field roads and crop rows. The results show 

that the heuristic back-end optimization algorithm based on localization estimation can significantly improve 

the localization accuracy and trajectory accuracy of the robot. 
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RESULTS 

Example of Map Construction 

To evaluate the performance of the proposed point cloud map construction approach, a test was 

conducted at the Xiaowangzhuang Agricultural Machinery Experimental Station of the China Agricultural 

Machinery Institute.  

The point cloud map for the experimental field is shown in Figure 7(a). The green dots signify non-

vegetative points, which include open areas, rocks on the land surface, and other comparable features. 

Meanwhile, blue dots indicate obstacles surrounding them, such as cornstalks or weeds. Figure 7(b) shows 

the performance of the point cloud map construction algorithm between crops rows in the experimental field. 

The algorithm has the function of localization estimation and can detect the failure of front-end pose tracking. 

Once tracking failure is detected, the localization estimation algorithm will be modified to improve the 

robustness and stability of the algorithm. Figure 7(c) illustrates an instance of point cloud map construction for 

field edges and field tracks. In this scenario, the luxuriant vegetation may lead to occlusion and increased 

noise in the point cloud data, thereby complicating the construction and localization of the point cloud map. 

Within the point cloud map, the geometric shape of the pathway and the distribution of surrounding vegetation 

are distinctly observable. The width and curvature of the pathway, as well as the potential presence of 

obstacles, are clearly discernible. Figure 7(d) illustrates a field pathways where point cloud mapping has been 

employed. The road is characterized by street trees situated on either side and a tarmac surface. The point 

cloud map provides clear visualization of the geometry and features of road, while also presenting the 

distribution and structure of the street trees as point clouds in space. 

 

 
a                                                                                                b 

 

 
c                                                                                                d 

Fig. 7 - Example of point cloud map construction 

a - example of point cloud mapping in experimental fields; b - example of point cloud mapping between crop row;  

c - example of point cloud mapping along field edges and field tracks; d - example of point cloud mapping on field pathway 

 

Localization Accuracy Evaluation 

In this experiment, the localization error in point cloud maps serves as the evaluation metric. The point 

cloud map localization error specifically signifies the distance difference between the algorithmically obtained 

localization result (Ppos) and the true position (Pgt) during the localization process. This difference is quantified 

using the Euclidean distance. Given the point cloud map localization result as Ppos and the true position as Pgt, 

the point cloud map localization error (E) is calculated as follows: 

𝐸𝑝𝑜𝑠 = ‖𝑃𝑝𝑜𝑠 − 𝑃𝑔𝑡‖                                                                     (16) 

Point cloud map localization accuracy refers to the statistical properties of localization errors, typically 

quantified using Root Mean Square Error (RMSE). RMSE represents the square root of the average of the 

squared values of all localization errors. Let n be the number of localization error samples, Epos,i and be the 

localization error of the ith sample. The calculation formula for point cloud map localization accuracy is given: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝐸𝑝𝑜𝑠,𝑖)

2𝑛
𝑖=1                                                           (17) 
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In assessing the performance of the mapping algorithm in terms of rotation and translation, high-

precision gyroscope data and Global Navigation Satellite System (GNSS) data were employed to obtain 

accurate rotation and translation information. The gyroscope recorded acceleration data, allowing for the 

derivation of rotation angles, which were then compared with the pose transformations calculated by the 

mapping algorithm to assess rotational accuracy. Positional information obtained through GNSS, and the 

translation vectors calculated by the mapping algorithm were compared to evaluate the algorithm's precision 

in translation. The data collection vehicle traversed along predefined paths, collecting three-dimensional point 

cloud data. Simultaneously, the gyroscope recorded the vehicle's rotational information, while GNSS captured 

the vehicle's positional data. 

Table 1 

Rotating positioning accuracy. 

Localization Accuracy / ° Between Crop Rows Field Edges Field Tracks Field Pathways 

Roll Angle 0.429 0.405 0.284 0.261 
Pitch Angle 0.249 0.250 0.206 0.175 
Yaw Angle 0.179 0.155 0.149 0.151 

 

The gyroscope was mounted at the central position of the vehicle, maintaining a fixed relative orientation 

to the vehicle body. In this gyroscope setup, the x-axis pointed in the vehicle's forward direction, the y-axis 

pointed to the right, and the z-axis pointed upward. Thus, the rotation angle of the vehicle's front around the x-

axis was referred to as the Roll Angle (𝜃x), rotation around the y-axis as the Pitch Angle (𝜃y), and rotation 

around the z-axis as the Yaw Angle (𝜃z). These angles were used to describe the vehicle's orientation and 

pose information. A detailed presentation of the positioning accuracy data is provided in Table 1. 

In the experiments, it is observed that in densely populated areas such as field edges and between crop 

rows, the accuracy is relatively lower, yet it remains within an error margin of approximately 0.5°. This 

discrepancy can be attributed to increased interference in motion estimation as the density of plants rises. 

Despite the removal of a significant portion of plant points during initial data processing, the presence of dense 

vegetation introduces more occlusion. Consequently, the availability of feature points for accurate estimation 

diminishes, making feature matching more challenging. In contrast, relatively open areas such as field 

pathways and large field pathways exhibit higher positioning accuracy due to reduced interference in motion 

estimation caused by limited occlusion. 

Following the validation of the algorithm's rotational accuracy, the subsequent step involves evaluating 

its translational precision. The GNSS positioning is employed as the ground truth in the experiment, with each 

scenario involving a 30-meter drive and error calculation performed every ten meters. The vehicle's position 

information is compared with GNSS positioning data, and translational errors are calculated. By comparing the 

differences between the vehicle's positioning and the actual GNSS positioning, the accuracy and precision of 

point cloud pose estimation are assessed. Detailed experimental results are presented in Table 2. 

Table 2  

Cumulative error. 

Error (cm) Orientation 10 m 20 m 30 m 

Field Pathways 
x 1.98 3.96 5.03 
y 1.95 2.83 4.85 

Field Tracks 
x 3.31 5.87 8.25 
y 1.93 3.85 6.87 

Field Edges 
x 3.84 7.73 11.45 
y 2.76 5.68 8.13 

Between Crop Rows 
x 4.15 7.53 11.68 
y 2.87 5.63 8.73 

 

In the scenarios of field pathways and field tracks, relative to the more complex terrains of field edges 

and between crop rows, the topography is relatively flat and open. Additionally, there is comparatively less 

vegetation obstruction and reflection interference. Therefore, in these two scenarios, the mapping algorithm 

exhibits higher translational accuracy, with cumulative errors over a 30 m travel distance measuring 5.03 cm 

and 8.25 cm, respectively. In contrast, in the scenarios of field edges and between crop rows, the distribution 

density of plants is higher, and the height and morphology of vegetation are more complex. This complexity 

results in more noise and errors in the point cloud data detected by the lidar sensor. Cumulative errors over a 

30 m distance in these scenarios are 11.45 cm and 11.68 cm, respectively. Despite the challenges posed by 

higher vegetation density and complexity, the cumulative errors in these scenarios remain within 12 cm. 
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CONCLUSIONS 

(1) Considering the environmental characteristics of typical agricultural machinery operation scenes, a 

comprehensive plan for semantic point cloud map construction was devised. In hardware design, a data 

acquisition device incorporating Lidar, RGB, and NIR sensors was designed. Furthermore, a calibration board 

was created for calibrating both visible and non-visible light cameras, and an algorithmic workflow for multi-

sensor joint intrinsic and extrinsic parameter calibration was established. In terms of algorithmic design, an 

advanced algorithm for high-precision point cloud map construction within the SLAM framework was proposed. 

Additionally, a Transformer-based semantic segmentation algorithm was introduced. 

(2) The algorithm, built upon the SLAM framework, addresses the challenges posed by dynamic points 

interference in agricultural machinery operation scenes through a plant point removal preprocessing method. 

An optimization algorithm inspired by locatability estimation was proposed for the backend, addressing the 

limitations of time or distance-based heuristics. Experimental evaluations conducted in field pathways, small 

pathways, and between crop rows showcased the effectiveness of the optimized mapping algorithm, with the 

median reprojection error Euclidean distances reduced by 10.27%, 20.76%, and 14.36%, respectively. 

(3) A high-precision map information collection vehicle was assembled, equipped with field information 

collection devices and deployed with mapping and semantic segmentation algorithms. Experimental trials 

conducted in field pathways, small pathways, field edges, and between crop rows demonstrated favorable 

results. At 30 meters, the average rotational localization errors were 0.429°, 0.405°, 0.284°, and 0.261°, with 

minimum cumulative errors ranging from 1.93 cm to 4.15 cm at 10 meters, 2.83 cm to 7.73 cm at 20 meters, 

and 4.85 cm to 11.68 cm at 30 meters. 
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