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Abstract: Identifying pests and diseases is vital for rice farming, but the lack of experts often limits it. We propose a 

novel method that uses deep metric learning and k-NN classifier to classify pests and diseases in paddy plants. We 

experimented using different distance metrics, latent dimensions, base models, and optimizers to train the neural model 

that produces latent representation from images. Then, we used k-NN retrieval approach to find and label similar 

images from the latent space. During the inference phase, we manipulated the original image using various 

transformations and fused them with its latent representation to enhance the quality of latent space. The results show 

that our method surpasses the conventional deep learning classification (softmax classifier). Specifically, our method 

achieved maximum accuracy of 0.920 on ResNet-50 and 0.878 on ResNet-152. In comparison, the softmax classifier 

only achieved maximum accuracy of 0.752 on the same modeling scheme. Our method can produce more 

discriminative and robust data representations for classification tasks. Moreover, latent fusion from input augmentation 

during inference can also improve accuracy up to 19.2%. We also deployed the best model from our experiment on 

serverless cloud computing, allowing users to use the platform for prediction and monitoring through GIS. 

Keywords: Paddy plant pest and disease, Deep metric learning, Distance metrics, k-NN, Latent fusion, Serverless 

cloud computing. 

 

 

1. Introduction 

Paddy plant pests and diseases are significant 

sources of anxiety for farmers, as they can reduce 

productivity or cause crop failure [1]. Identifying 

these issues requires knowledge and experience, but 

there is a shortage of officers to monitor and control 

them in Indonesia. Therefore, there is a need for an 

automated and accurate diagnosis system that can 

help farmers detect and manage paddy health 

problems. Recent advances in computer vision have 

enabled fast and accurate diagnosis of plant diseases. 

However, traditional image recognition algorithms 

have limited performance for plant pest and disease 

recognition, as mentioned by Liu et al. [2]. They face 

challenges such as similar symptoms, slight leaf-

background differences, low contrast, considerable 

leaf scale variation, and noisy leaf images. Therefore, 

we need an advanced identification algorithm to 

overcome these problems. Deep learning (DL) can 

automatically extract features using convolutional 

kernels optimized with specific algorithms. However, 

conventional deep learning classification has a 

drawback where the extracted features are difficult to 

understand intuitively, and the model cannot 

rationalize its predictions. Moreover, deep learning 

classification is based on supervised learning, which 

requires a large amount of labeled data for each class. 

The output is a fixed probability model, which makes 

them less adaptable to new domains. 

To overcome these limitations, we propose an 

enhanced classification algorithm, using latent fusion 

augmented images incorporating deep metric 

learning with k-NN approximation (FADMAKA). 

Deep metric learning (DML) is an approach that 

focuses on measuring the similarity or dissimilarity 

between samples by using a neural model to learn the 

optimal distance metric [3]. DML utilizes a neural 
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model to learn an optimal distance metric, enabling 

automated feature extraction and non-linear 

transformations into a latent space [4]. This latent 

space allows for interpretability and flexibility, 

making the model's predictions more intuitive and 

adaptable to new domains. These representations 

possess heightened discriminative qualities and can 

be effectively separated by interpretable machine 

learning models like k-NN, SVM, or logistic 

regression [5]. We employed various augmentation 

techniques during inference, including rotation, 

flipping, and shifting, to generate distinct latent 

representations for each image. These representations 

were averaged to create a final representation, termed 

"augmented latent fusion," to enhance robustness and 

diversity. Subsequently, we adopted k-NN 

classification to determine each image's class by 

comparing its latent representation with all training 

images in the latent database. The chosen k-NN 

classifier offers simplicity, interpretability, and non-

parametric properties. We deployed our optimal 

model to the cloud, providing a scalable and 

accessible solution for paddy plant pest and disease 

identification that can be accessed through a browser. 

We created a world map service that shows the time-

series data to track the prediction over time. We also 

suggested some solutions and preventive actions to 

deal with the identified threats on our platform. 

The paper's subsequent sections discuss related 

works on plant pest and disease recognition (section 

2), provide a detailed explanation of the proposed 

method (section 3), present experimental setup, 

results, and analysis (section 4), and conclude with a 

summary of the main findings (section 5). 

2. Literature study 

The discussion in this section focuses on several 

state-of-the-art methods for identifying pests and 

diseases in paddy plants. Lu et al. [6] utilized median 

filtering, histogram equalization, and edge 

segmentation techniques on the rice sheath blight 

images. They concatenated the color features (R, G, 

and B values) with the texture features (mean, 

contrast ratio, and entropy), which were then used as 

input for the neural network. However, this method 

has limited feature representation and may not 

capture the complex patterns of images. High-

dimensional input data can also result from this 

technique, which can cause the curse of 

dimensionality and raise the risk of overfitting. Ni et 

al. [7] proposed a method that uses data augmentation 

and deep learning to classify rice pests and diseases. 

They also designed a new model, RepVGG_ECA,  

 

Table 1. Related works on paddy plant pest and disease 

Approach  Method 
Object 

Deploy 
Pest Disease 

Lu et al. [6] DL – ✓ – 

Ni et al. [7] DL ✓ ✓ – 

Malathi et al. [8] DL ✓ – – 

Rahman et al. [9] DL ✓ ✓ – 

Ours DML ✓ ✓ ✓ 

 

that adds efficient channel attention (ECA) attention 

mechanism to the RepVGG model to enhance the 

feature extractor. This approach relies on supervised 

learning, which necessitates a substantial volume of 

labeled data, leading to its heavy reliance on labeled 

samples. DML can leverage unlabeled data, reducing 

the dependance on labeled samples because it only 

requires a distance function that can compare pairs or 

triplets of samples rather than their actual class labels. 

Malathi et al. [8] utilized deep learning techniques for 

classifying ten pests in paddy crops. They employed 

augmented pest images for training and experimented 

with various DCNN architectures. The ResNet-50 

model with fine-tuning achieved the highest accuracy. 

This method also relies on supervised learning, 

leading to limited adaptability to new domains due to 

fixed probability outputs. Moreover, the prediction 

output is hard to intuitively understand. Rahman et al. 

[9] proposed deep learning-based methods for 

classifying diseases and pests in rice plants using 

CNNs. They experimented with two types of CNN 

architectures: large-scale and small-scale 

architectures. They also introduced a new 

architecture that used a simple CNN with lower 

model complexity but high performance. The best 

model with the highest accuracy was VGG16 with 

fine-tuned training. This method is also based on 

supervised learning, which has the same limitations 

as the previous methods. 

Our proposed method introduced several 

improvements over the existing methods. First, 

unlike previous research that only focused on 

predicting pests or diseases separately, our study 

could identify both pests and diseases simultaneously. 

Second, our method used DML with augmented 

latent fusion instead of conventional deep learning. 

Third, we could enhance the classifier outcome with 

new samples without retraining the model, as we 

could expand the database with new samples to 

improve the k-NN algorithm. Fourth, we also 

deployed the best model to the cloud, which offered 

a scalable and accessible solution not only in research 

paper but also in practice. Table 1 provides a snapshot 

of some relevant research in identifying pests and  
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Figure. 1 Sample images for each class 

 

diseases in rice plants and how it compares to our 

work. 

3. Proposed methodology 

In this section, we will describe the overall 

research framework, which has five main 

components: (1) data preparation consisting of image 

acquisition and augmentation; (2) image pre-

processing; (3) triplet sampling and model 

development; (4) accuracy testing and comparison 

with baseline and state-of-the-art methods; and 

finally (5) model deployment. 

3.1 Image acquisition 

In this study, we acquired image data from 

various sources, such as Large-scale dataset for 

identifying insect pests: IP102 (field environment) 

[10], Rice leaf diseases data set (white background) 

[11], Rice plant diseases (field environment) [12], 

and also some images scraped from Google images. 

Fig. 1 illustrates sample images for each class. We 

curated different datasets with varied conditions to 

ensure image quality and diversity. Manual analysis 

and cropping were conducted to augment the image 

samples, especially for cases with multiple diseases 

in a single image. Duplicate images were removed, 

and mislabeled images were corrected. The data was 

split into three parts: training set (80%), validation set 

(20%), and holdout set (100 new samples per class). 

Table 2 presents the data distribution across these sets.  

3.2 Image augmentation 

Image augmentation varies training images to 

increase their number and address class imbalance 

[13]. For augmentation during training, we used 

random rotation with an angle range from -15 degrees 

to +15 degrees represented by Eq. (1), horizontal flip 

represented by Eq. (2), and blur up to m = 1 pixel 

represented by Eq. (3). 

 

 𝑇𝑅(𝑥, γ) = 𝑥′(𝑝 𝑐𝑜𝑠 γ − 𝑞 𝑠𝑖𝑛 γ , 𝑝 𝑠𝑖𝑛 γ 

+𝑞 𝑐𝑜𝑠 γ , 𝐶)  (1) 

 

 𝑇𝐻(𝑥) = 𝑥′(𝑝, 𝑊 − 𝑞 − 1, 𝐶)                        (2) 

 

 𝑇𝐵(𝑥, 𝑚) =  
1

(2𝑚+1)2 ∑  𝑚
𝑖=−𝑚 ∑ 𝑥′(𝑝 + 𝑖, 𝑞 + 𝑗, 𝐶)𝑚

𝑗=−𝑚        (3) 

 

where 𝑝, 𝑞 are the pixel coordinates in the image 𝑥, γ 

is angle of rotation, 𝑊 is the image's width, 𝑚 is the 

radius of the square region used in the box blur filter, 

and 𝐶 is the channel.  

3.3 Image pre-processing 

We used a uniform resolution of 64x64 pixels 

with RGB channel. The image contrast was enhanced 

by adjusting the image intensity range to a broader 

target range using the contrast stretching method, 

calculated by Eq. (4) [14].  

 

𝑃𝑜𝑢𝑡_𝐶 = (𝑃𝑖𝑛_𝐶 − 𝑐𝐶)
(𝑏𝐶−𝑎𝐶)

(𝑑𝐶−𝑐𝐶)
+ 𝑎𝐶          (4) 

 

where 𝑃𝑜𝑢𝑡_𝐶  is the output pixel, and 𝑃𝑖𝑛_𝐶  is the 

input pixel. The formula stretches the input range 

[𝑐𝐶 , 𝑑𝐶] to the output range [𝑎𝐶 , 𝑏𝐶] for each channel 

𝐶 ∈ {𝑅, 𝐺, 𝐵} . After that, the image pixels were 

scaled to be between 0.0 and 1.0, then normalized 

with mean and standard deviation using Eq. (5). 

 

𝑥𝑛𝑜𝑟𝑚_𝐶 =
𝑥𝐶−𝜇[𝐶]

𝜎[𝐶]
                                 (5) 

 

where 𝑥𝑛𝑜𝑟𝑚_𝐶 is the normalized image and 𝑥𝐶 is the 

original image for each channel. Each channel's mean 

and standard deviation values are calculated from 

ImageNet, given by 𝜇 =  [0.485, 0.456, 0.406] and 

𝜎 =  [0.229, 0.224, 0.225], arrays of length 3 to the 

respective RGB channel.  

3.4 Triplet sampling 

Training and validation sets were restructured 

into anchor, positive, and negative parts, as shown in 

Fig. 2, to train the triplet network that maps images 

to the latent space. In latent space, we aim for the 

anchor and positive images (same class) to be close, 

while the anchor and negative images (different 

classes) are distant. Triplet sampling is vital for 

learning a discriminative feature. The triplets should 

be informative and challenging, meaning that the  
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Figure. 2 Triplet network 

 
Table 2. Distribution of data for different pathogens 

Class Pathogen name 
Amount of data 

Train Validation Holdout 

0  Bacterial leaf blight 1171 293 100 

1 Brown planthopper 1175 293 100 

2 Rice leafhopper 1435 359 100 

3 Rice blast 2526 641 100 

4 Brown spot 1298 324 100 

5 Yellow rice borer 1254 314 100 

 

positive image is similar but not identical to the 

anchor image, and the negative image is dissimilar 

but not too distant from the anchor image.  

3.5 Phase 1: DML model 

The DML model is part of deep metric learning 

that maps high-dimensional data to low-dimensional 

space (latent). In this study, we fine-tuned 

IMAGENET1K_V2 pre-trained weights on ResNet-

50 and ResNet-152 as base models in our case [15]. 

ResNet-50 and ResNet-152 are CNN models with 50 

and 152 layers, respectively, organized into residual 

blocks with skip connections. Both models use 

bottleneck design to decrease computation cost and 

parameter size. We used parametric rectified linear 

unit (PReLU) activation function, as shown in Fig. 2. 

PReLU improves ReLU by using a learnable 

parameter to control the slope of the negative part of 

the activation function [16]. The DML model learns 

discriminative representations based on the distance 

between latent representations, optimized with an 

objective function that measures the similarity or 

dissimilarity.  

3.5.1. Objective function 

Triplet margin loss decreases the distance 

between anchor input (𝑋𝑖) and positive input (𝑋𝑝), 

while increasing the distance between the anchor 

input (𝑋𝑖 ) and a negative input (𝑋𝑛 ) in the latent 

space. Let 𝑓(·)  denotes DML model, where 

𝑓(𝑋𝑖; 𝑤𝑡 , 𝑏𝑡) is the DML model that is fed with 𝑋𝑖 

from 𝑁  samples. The terms 𝑤𝑡  and 𝑏𝑡  are weights 

and biases that will be optimized using Eq. (6). We 

obtain latent representation as the output for anchor, 

positive, and negative input, then calculate 𝑑, i.e. a 

specific distance metric, calculated using Eqs. (7-9). 

We added a margin to increase the distance between 

the anchor and the negative, denoted as 𝛼 of 1.0. In 

principle, a more significant margin produces a more 

distinct latent space but makes converging the 

training process harder. 

 

𝑤̂, 𝑏̂ =  ℒ𝑇𝑤𝑡,𝑏𝑡

𝑎𝑟𝑔 𝑚𝑖𝑛

ℒ𝑇 = ∑ 𝑚𝑎𝑥(𝑑(𝑓(𝑋𝑖; 𝑤𝑡, 𝑏𝑡), 𝑓(𝑋𝑝;  𝑤𝑡, 𝑏𝑡))𝑁
𝑖=1  

  

−𝑑(𝑓(𝑋𝑖;  𝑤𝑡 , 𝑏𝑡), 𝑓(𝑋𝑛;  𝑤𝑡 , 𝑏𝑡)) + 𝛼, 0) 

(6) 

 

The latent dimension is given by ℎ, finding ℎ is a 

trade-off between efficient (small size) and effective 

(large size) [17]. We tested latent dimensions for ℎ ∈
 {16, 256, 1024}, and we varied the epochs based on 

latent space size: 100 for 16, 200 for 256, and 300 for 

1024. In this study, we experimented using several 

metrics, including Euclidean distance calculated 

using Eq. (7) [18], cosine distance calculated using 

Eq. (8) [19], and Pearson correlation calculated using 

Eq. (9) [20-21]. Pearson correlation is not a distance 

function because it violates triangle inequality. 

However, Pearson correlation can measure the linear 

relationship between two latent to estimate the 

similarity by indicating their linear closeness. 

 

𝑑(𝑧, 𝑧′) = √∑  ℎ
𝑖=1 (𝑧𝑖 − 𝑧′𝑖)2                       (7) 

 

𝑑(𝑧, 𝑧′) = 1 −
∑ 𝑧𝑖𝑧𝑖

′
ℎ

𝑖=1

√∑ 𝑧𝑖
2ℎ

𝑖=1
∑ 𝑧′𝑖

2ℎ

𝑖=1

               (8) 

 

𝑑(𝑧, 𝑧′) = 1 −
∑ (𝑧𝑖−𝑧̄)(𝑧𝑖

′−𝑧̄′)
ℎ

𝑖=1

√∑ (𝑧𝑖−𝑧̄)2ℎ

𝑖=1
∑ (𝑧𝑖

′−𝑧̄′)2ℎ

𝑖=1

      (9) 
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Algorithm 1: FADMAKA with augmented set 3 

1 Input:  

Training set 𝒟𝑡 = {(𝑥𝑖
𝑡 , 𝑦𝑖

𝑡)}𝑖=1
𝑛𝑡 , 

Validation set 𝒟𝑣 = {(𝑥𝑖
𝑣, 𝑦𝑖

𝑣)}𝑖=1
𝑛𝑣 , 

Holdout set 𝒟𝑒 = {(𝑥𝑖
𝑒 , 𝑦𝑖

𝑒)}𝑖=1
𝑛𝑒 , 

2 Data augmentation and pre-processing 

- Augment 𝒟𝑡 by Eq. (1) to Eq. (3) 

- Pre-process 𝑥𝑖
𝑡 , 𝑥𝑖

𝑣 , 𝑥𝑖
𝑒 by Eq. (4) to Eq. (5) 

3 Triplet sampling 

- Resample 𝒟𝑡and 𝒟𝑣 as triplet sample 

4 Phase 1: develop DML model 

- Define DML model 𝑓(·) that outputs latent 

representation 𝑧 ∈ 𝑅ℎ 

5 Define objective function 

- Define triplet loss using Eq. (6) with a 

specific distance metric from Eq. (7) to Eq. 

(9) 

6 DML model training 

- Train 𝑓(·)  using 𝑥𝑖
𝑡  for obtaining final 𝑤 ̂ 

and 𝑏̂ by solving Eq. (6) using optimization 

SGD in Eq. (10) or AdamW in Eq. (11) 

- Validate and checkpoint 𝑓(·) using 𝒟𝑣 

7 Compute latent for training and validation set 

- zt =  {𝑓(𝑥𝑖
𝑡; 𝑤,̂ 𝑏̂) | 𝑥𝑖

𝑡 ∈ 𝒟𝑡}  

- zv =  {𝑓(𝑥𝑖
𝑣; 𝑤,̂ 𝑏̂) | 𝑥𝑖

𝑣 ∈ 𝒟𝑣} 

8 Phase 2: k-nearest neighbors 

- Find the optimal 𝑘 value that maximizes the 

accuracy of zv in zt database 

9 Compute latent for holdout set and classify 

- 𝑧𝑖
𝑒 =  {𝑓(𝑥𝑖

𝑒; 𝑤,̂ 𝑏̂) | 𝑥𝑖
𝑒 ∈ 𝒟𝑒}  

- 𝑧𝑖
𝑟 = {𝑓(𝑇𝑅(𝑥𝑖

𝑒, γ);  𝑤,̂ 𝑏̂) | 𝑥𝑖
𝑒 ∈ 𝒟𝑒}  

- 𝑧𝑖
ℎ =  {𝑓(𝑇𝐻(𝑥𝑖

𝑒);  𝑤,̂ 𝑏̂) | 𝑥𝑖
𝑒 ∈ 𝒟𝑒}  

- 𝑧𝑖
𝑠 = {𝑓(𝑇𝑆(𝑥𝑖

𝑒 , (𝛥𝑝, 𝛥𝑞)); 𝑤,̂ 𝑏̂) | 𝑥𝑖
𝑒 ∈ 𝒟𝑒} 

- 𝑧𝑖
𝑓

=  
1

4
(𝑧𝑖

𝑒 + 𝑧𝑖
𝑟 + 𝑧𝑖

ℎ + 𝑧𝑖
𝑠)  

- k-NN 𝑧𝑖
𝑓
 with 𝑘 from step 8 in zt database 

10 Output: predicted class of 𝑥𝑖
𝑒 

 

where 𝑧 ∈ ℝℎ  to denote the latent space of 𝑋𝑖  and 

𝑧′ ∈ ℝℎ to denote the latent space of any other input 

( 𝑋𝑝  or 𝑋𝑛 ). 𝑧̄  and 𝑧̄′  is the average of the latent 

representation of 𝑧 and 𝑧′ that can be calculated by 

𝑧̄ =
1

ℎ
∑ 𝑧𝑖

ℎ
𝑖=1  and 𝑧̄′ =

1

ℎ
∑ 𝑧′𝑖

ℎ
𝑖=1 .  

 

3.5.2. Optimization algorithm 

The optimization algorithm aims to adjust the 

neural model weights to achieve the minimum loss 

value. We experimented with different optimizers, 

including SGD and AdamW. SGD works by updating 

model weights by taking small steps in the opposite 

direction of the gradient of the objective function. 

The equation for SGD algorithm is shown in Eq. (10). 

 

θ𝑡+1 = θ𝑡 −  𝜂∇θℒ𝑇(𝑤𝑡 , 𝑏𝑡)                      (10) 

where θ𝑡 =  [wt, bt]   and θ𝑡+1 =  [wt+1, bt+1]   are 

the model parameters at iteration t and t + 1. Note 

that wt+1 is updated the weight parameter, bt+1 is 

updated the bias parameter, 𝜂 is the learning rate, and 

∇θℒ𝑇(𝑤𝑡, 𝑏𝑡) are the gradients of the loss function 

with respect to 𝑤𝑡  and 𝑏𝑡 . On the other hand, 

AdamW is an adaptive optimization algorithm that 

decouples weight decay regularization terms from the 

gradient update, which can reduce the large weights 

on the model during training to avoid overfitting. The 

equations for AdamW algorithm are denoted as 

follows Eq. (11) [22].  

 
𝑚𝑡+1 = 𝛽1𝑚𝑡 + (1 − 𝛽1)∇θℒ𝑇(𝑤𝑡, 𝑏𝑡)

𝑣𝑡+1 = 𝛽2𝑣𝑡 + (1 − 𝛽2)(∇θℒ𝑇(𝑤𝑡, 𝑏𝑡))
2

𝑚̂𝑡+1 =
𝑚𝑡+1

1−𝛽1
𝑡+1

𝑣𝑡+1 =
𝑣𝑡+1

1−𝛽2
𝑡+1

θ𝑡+1 = θ𝑡 −  𝜂𝜆θ𝑡 −
 𝜂𝑚̂𝑡+1

√𝑣̂𝑡+1+ϵ 

    (11) 

 

where 𝑚𝑡+1 and 𝑣𝑡+1  are the first and second-

moment estimates of the gradient with respect to the 

parameters, 𝑚̂𝑡+1 and 𝑣𝑡+1 are the bias-corrected 

estimates of 𝑚𝑡+1 and 𝑣𝑡+1 to improve reliability, β1 

and β2 are exponential decay rates for the moment 

estimates, we used 0.9 and 0.999, respectively. ϵ is a 

small constant to prevent division by zero, we used 

1e-8, and 𝜆 is the weight decay coefficient we used 

1e-2. We used the initial learning rate 𝜂 of 0.001 for 

SGD and AdamW. A large learning rate may miss the 

minimum, while a small one may approach too 

slowly or get trapped in local minima [23]. However, 

AdamW is a method that adapts the learning rate for 

different parameters because it uses the average of the 

first and second moments of the gradients.  

3.6 Phase 2: classification task 

In this research, we compared two classifiers: 

FADMAKA with k-NN for our proposed method and 

softmax classifier to implement the baseline and 

state-of-the-art methods as a comparison model. 

3.6.1. Extract and fuse latent space 

After optimizing the DML model, we got the 

final weights and biases, denoted as 𝑤 ̂ and 𝑏̂.  We 

obtain the latent space using 𝑓(·) for the training set, 

denoted as 𝑧𝑡, the validation set, denoted as 𝑧𝑣, and 

the holdout set, denoted as 𝑧𝑒. We use 𝑛𝑡, 𝑛𝑣, and 𝑛𝑒 

to denote the number of train, validation, and holdout 

sets, respectively. They are defined as follows Eq. 

(12). 
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Figure. 3 2D latent space using t-SNE: ResNet-50 with 

AdamW, Pearson 16dims 

 

 

Figure. 4 Augmented latent fusion anatomy 

 

𝑧𝑡 = {𝑧𝑖
𝑡|𝑖 = 1, … , 𝑛𝑡}

𝑧𝑣 = {𝑧𝑖
𝑣|𝑖 = 1, … , 𝑛𝑣}

𝑧𝑒 = {𝑧𝑖
𝑒|𝑖 = 1, … , 𝑛𝑒}

                           (12) 

 

where 𝑧𝑖
𝑡  = f(𝑥𝑖

𝑡;  𝑤,̂ 𝑏̂), 𝑧𝑖
𝑣  = f(𝑥𝑖

𝑣;  𝑤,̂ 𝑏̂ ), and 𝑧𝑖
𝑒  = 

f( 𝑥𝑖
𝑒;  𝑤,̂ 𝑏̂ ). We also used random augmentation 

during inference to improve representative latent 

space, as different image matrices can produce 

different latent representations. We obtain the latent 

space for the rotated holdout set, denoted as 𝑧𝑟, the 

horizontal flipped holdout set, denoted as 𝑧ℎ, and the 

shifted holdout set, denoted as 𝑧𝑠 . Note that 𝑛𝑒 =
𝑛𝑟 = 𝑛ℎ = 𝑛𝑠 is the number of holdout images. They 

are defined as follows Eq. (13). 

 
𝑧𝑟 = {𝑧𝑖

𝑟|𝑖 = 1, … , 𝑛𝑟}

𝑧ℎ = {𝑧𝑖
ℎ|𝑖 = 1, … , 𝑛ℎ}

𝑧𝑠 = {𝑧𝑖
𝑠|𝑖 = 1, … , 𝑛𝑠}

                (13) 

 

where 𝑧𝑖
𝑟 =  𝑓(𝑇𝑅(𝑥𝑖

𝑒 , 𝛾);  𝑤,̂ 𝑏̂) , 𝑧𝑖
ℎ =  𝑓(𝑇𝐻(𝑥𝑖

𝑒);  
𝑤,̂ 𝑏̂), and 𝑧𝑖

𝑠 =  𝑓(𝑇𝑆(𝑥𝑖
𝑒 , (𝛥𝑝, 𝛥𝑞)); 𝑤,̂ 𝑏̂). Here, 𝑇𝑅 

is the random rotation function stated in Eq. (1) with 

𝛾 ∼ 𝑈(−15,15).  𝑇𝐻  is horizontal flipping function 

stated in Eq. (2), and 𝑇𝑆 is random shifting function 

from -10 to +10 in the x and y axes, stated in Eq. (14). 

 

 𝑇𝑆(𝑥, (𝛥𝑝, 𝛥𝑞)) = 𝑥′(𝑝 − 𝛥𝑝, 𝑞 −  𝛥𝑞, 𝐶)       (14) 

 

where (𝛥𝑝, 𝛥𝑞) ∼ 𝑈(−10,10) × 𝑈(−10,10). After 

that, we fused the latent space by calculating the 

average of each dimension, where denoted as 𝑧𝑓. The 

calculation for the augmented set 3 is as follows Eq. 

(15). 

 

𝑧𝑓 = {𝑧𝑖
𝑓

|𝑖 = 1, … , 𝑛𝑓}                   (15) 

 

where 𝑧𝑖
𝑓

=
1

4
(𝑧𝑖

𝑒 + 𝑧𝑖
𝑟 + 𝑧𝑖

ℎ + 𝑧𝑖
𝑠)  and 𝑛𝑓  is the 

number of element latent set, which is equal to the 

number of holdout set. Depending on the augmented 

set scenario, we may calculate the average of 

different latent spaces. For the augmented set 2, we 

averaged 𝑧𝑒 , 𝑧𝑟, and 𝑧ℎ. For the augmented set 1, we 

only averaged 𝑧𝑒 and 𝑧𝑟. 

3.6.2. k-NN 

We used k-NN to classify the latent 

representation as it is easily separable with distance 

information. Algorithm 1 contains a summary of the 

FADMAKA method we propose. For an input image 

during inference, we retrieved similar images from 

𝑧𝑡 ,  i.e. latent space of the training set. The k-NN 

algorithm ranks the scores and selects a few nearest 

neighbors to assign the class prediction of the input 

image. Fig. 3 shows the 2D representation of the 

latent space 𝑧𝑡 , which we obtained by applying t-

SNE dimensionality reduction with perplexity 15 

with automatically optimized learning rate [24]. The 

figure reveals that each class forms its own cluster 

and is well separated from the others. However, some 

classes are not well separated and are mixed with the 

wrong clusters. It may indicate they have similar 

features, such as brown spot and rice blast. This is 

reasonable because some images of rice blast also 

show brown spot on the same leaf. Augmented latent 

fusion can improve the robustness of latent 

representation, as shown in Fig. 4. The original latent 

point is close to a different class that it does not 

belong to. But when we use the augmented input and 

take the average of the latent points along each 

dimension, the augmented point shifts towards the 

same class. Nevertheless, it also means that we need 

to calculate more than one latent representation for 

each input during inference, depending on how much 

we vary the augmentation. 

3.6.3. Softmax classifier 

We compared the accuracy of FADMAKA with 

the softmax classifier (baseline) using fine-tuned  

 



Received:  July 11, 2023.     Revised: August 13, 2023.                                                                                                   164 

International Journal of Intelligent Engineering and Systems, Vol.16, No.6, 2023           DOI: 10.22266/ijies2023.1231.14 

 

 
Figure. 5 Implementation system for identification and location mapping 

 

techniques also on ResNet-50 and ResNet-152 base 

models. We trained the models for 300 epochs, a 

sufficiently high number to avoid underfitting. We 

also implemented checkpointing weights to prevent 

overfitting issues [23]. For these scenarios, we 

appended a fully connected layer with six nodes and 

a softmax layer in the last layer of the base model 

from Fig. 2 for the classification task. We 

experimented by changing optimizers with SGD and 

AdamW. Furthermore, we also reproduced the state-

of-the-art methods using a softmax classifier and 

compared their accuracy with FADMAKA. We 

applied the categorical cross-entropy loss function as 

the standard loss function for multi-class deep 

learning classification Eq. (17) [25]. 

 

𝑊̂, 𝐵̂ =  ℒ𝑋𝑤𝑡,𝑏𝑡

arg 𝑚𝑖𝑛

 ℒ𝑋 = −
1

𝑁
∑  𝑁

𝑖=1 ∑  𝐾
𝑗=1 𝑦𝑖𝑗log (𝑠𝑖𝑗)

               (17) 

 

where 𝑁 is the number of samples, 𝐾 is the number 

of classes, yij is the true label of the i-th sample for 

the j-th class, and 𝑠𝑖𝑗 is the predicted probability from 

softmax layer of the i-th sample for the j-th class. 

3.7 Model deployment 

We deployed the best model from this research 

on a cloud platform using a serverless cloud service 

with FastAPI and GIS for the mapping system, as 

shown in Fig. 5. In the implementation phase, the user 

needs to take a picture with GPS enabled on their 

device, and then send the data to our API. The DML 

model then extracts the latent representation from the 

image and compares it with the latent in the database 

using k-NN. After that, the algorithm predicts the 

threat class, writes it to the EXIF image along with 

the GPS location and time, and saves it in the image 

database. The user can monitor the prediction results 

on our world map service, which uses a time-series 

world map to track environmental changes [26]. We 

also used reverse geocoding technique to find the 

human-readable address based on its coordinates 

from the EXIF data. Besides the time-series world 

map that can help monitor pest or disease outbreaks 

in a specific region, we also provide 

recommendations based on the predicted threat to 

assist the user in managing the problem. The user can 

also see the predicted class and similar images on the 

main page as feedback to verify the prediction by 

looking at the retrieved images from the database, an 

advantage of FADMAKA that can provide 

interpretable results, unlike conventional deep 

learning classification. 

Moreover, we can enrich the database with new 

samples to enhance the classifier without retraining 

the DML weights. Theoretically, using the few-shots 

learning approach, we can also directly apply it to 

identify many other pests and diseases by saving the 

latent representation from the new classes in the 

latent database. This is possible because the DML 

model does not output a probability distribution that 

sums up to one like a softmax classifier does. Instead, 

it outputs a latent representation that captures the 

similarity or dissimilarity between images. The DML 

model learns to distinguish between images by 

creating a considerable margin distance in the latent 

space [27].  
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4. Experimental results and discussion 

In this experiment, we ran our model on a 

hardware device consisting of an Intel® Xeon® CPU 

@ 2.00GHz with 13GB of RAM and a Tesla P100-

PCIE 16GB graphics card (CUDA 11.4) with the 

seed 2023 for the reproducibility of the random 

process. We used three different sets of data for 

training, validation, and testing. The training set was 

used to train the model by adjusting the model 

parameters through a backpropagation algorithm 

with a batch size of 16. The validation data was used 

to select the best model during training using 

checkpointing and to choose the k value for the k-NN 

algorithm. After completing the training, we loaded 

the best model parameters from the checkpoint to 

evaluate the holdout set.  

4.1 Choosing k from validation set's latent space 

This subsection aims to determine the optimal 

value of 𝑘 that produces the best FADMAKA testing 

accuracy for each scenario on the validation set. We 

can observe in Fig. 6, that models perform best at a 

specific 𝑘 ∈ {1,6,11, . . . ,196} . Thus, selecting the 

appropriate 𝑘 value is vital for developing the model 

with high and stable performance on unseen data. 

According to Fig. 6, the median of maximum 

accuracy on the validation set for ResNet-50 with 

SGD is 0.872, while for AdamW it is 0.970. For 

ResNet-152, the median of maximum accuracy with 

SGD is 0.869, while for AdamW it is 0.986. AdamW 

achieves higher median maximum accuracy of all 

tested scenarios compared to SGD. This is likely due 

to its ability to adaptively adjust the learning rate 

during training and maintain optimal weight values, 

because of weight decay regularization which 

reduces overfitting. In contrast, SGD may experience 

fluctuations in the gradient, leading to oscillations in 

the objective function and longer convergence times. 

Additionally, SGD may also be prone to overfitting 

when using non-Euclidean distance metrics in higher 

dimensions as shown in Fig. 6. Higher base model 

complexity can also lead to higher median accuracy 

in the AdamW scenario. This may be because higher 

DML model complexity optimized by SGD can also 

increase the risk of overfitting. 

4.2 Evaluation on holdout set 

In this subsection, we evaluated holdout set using 

𝑘 values from the validation set in the previous sub-

section and the k-NN classifier on the latent space 

database from the train set. Holdout data measures 

how well the model can predict unseen data, not part 

of the training or validation process. Tables 3 and 4 

show the FADMAKA accuracy with different 

distance metrics, optimizers, and latent dimensions 

using holdout set. Based on the data presented, the 

median accuracy for ResNet-50 with SGD is 0.708, 

while for AdamW it is 0.745. In comparison, the 

median accuracy for ResNet-152 with SGD is 0.715, 

while for AdamW it is 0.755.  Our findings on 

holdout evaluation indicate that AdamW outperforms 

SGD and that ResNet-152 achieves higher accuracy 

than ResNet-50. It is in line with our previous 

analysis using the validation set. ResNet-152 has 

more layers and parameters than ResNet-50, which 

allows it to extract more complex and deep features 

from the data. However, more layers and parameters 

imply that the model needs more time and resources 

for inference and the risk of overfitting. The results 

in Tables 3 and 4 also show that increasing the latent 

dimension does not constantly improve the holdout 

accuracy, even with more training epochs, because a 

higher latent dimension means that the model can 

learn more complex or diverse features, but it also 

increases the risk of overfitting, which is when the 

model memorizes the training data and fails to 

generalize to unseen data. The optimal ResNet-50 

model had a latent dimension of 16, 36 k nearest 

neighbors, was optimized using AdamW with 

Pearson correlation, and achieved an accuracy of 

0.772. In contrast, the best ResNet-152 model had a 

latent dimension of 1024, 6 k nearest neighbors, was 

optimized using AdamW with Euclidean distance, 

and achieved an accuracy of 0.789. 

4.3 Comparison with the baseline models 

We evaluated the performance of the best 

models from FADMAKA schemes by comparing its 

accuracy with the baseline softmax classifier 

performed on holdout set as shown in Table 5 and 

Table 6. FADMAKA without augmented latent 

outperformed the deep learning classification, 

achieved an accuracy of 0.772 on ResNet-50 with a 

latent dimension of 16 and a computation time of 5.59 

ms, and an accuracy of 0.789 on ResNet-152 with a 

latent dimension of 1024 and a computation time of 

31.45 ms. Moreover, fusing augmented latents on 

images can improve FADMAKA accuracy, but it also 

increases computation time. For ResNet-50, the 

accuracy increases by 11%, 15%, and 19.2% with the 

fusion of augmented type 1, type 2, and type 3, 

respectively, and the computation times are 11.6 ms, 

16.06 ms, and 20.96 ms, respectively. For ResNet-

152, the accuracy increases by 2.4%, 6.7%, and 

11.3% with the fusion of augmented type 1, type 2, 

and type 3, respectively, and the computation times 

are 44.9 ms, 58 ms, and 70.35 ms, respectively. We  
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Figure. 6 Validation set accuracy of DML with various k-NN settings for all FADMAKA schemes 

 

Table 3. Holdout set accuracy of DML with the best k-NN settings using ResNet-50 

Optimizer 
Latent 

dimension 

Max 

epochs 

Cosine distance Euclidean distance Pearson correlation 

k-NN Accuracy k-NN Accuracy k-NN Accuracy 

SGD 

16 100 46 0.679 31 0.730 31 0.690 

256 200 1 0.733 11 0.752 1 0.723 

1024 300 1 0.687 46 0.707 1 0.708 

AdamW 

16 100 106 0.745 16 0.745 36 0.772 

256 200 31 0.740 21 0.742 16 0.712 

1024 300 21 0.753 31 0.760 21 0.738 

 

Table 4. Holdout set accuracy of DML with the best k-NN settings using ResNet-152 

Optimizer 
Latent 

dimension 

Max 

epochs 

Cosine distance Euclidean distance Pearson correlation 

k-NN Accuracy k-NN Accuracy k-NN Accuracy 

SGD 

16 100 96 0.723 26 0.733 86 0.710 

256 200 1 0.667 11 0.750 1 0.715 

1024 300 1 0.703 21 0.660 1 0.752 

AdamW 

16 100 21 0.783 6 0.713 6 0.755 

256 200 6 0.733 31 0.785 6 0.760 

1024 300 1 0.717 6 0.789 16 0.753 

 

found that ResNet-152 without fusion augmentation 

with 1024 latent dimensions achieved the highest 

accuracy. However, when we added fusion 

augmentation, its accuracy did not significantly 

increase compared to the ResNet-50 with 16 latent 

dimensions. This might happen because the high 

dimension created more variation in the augmented 

latent. As a result, when the latent points were  
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Table 6. Accuracy of FADMAKA on holdout set 

Base model 
Optimizer 

(lr: 0.001) 
Loss function 

Max 

epochs 
Augmented latent 

Latent 

dimension 
k-NN 

Inf. time 

(ms) 
Acc 

ResNet-50 AdamW Triplet Pearson 100 – 16 36 5.59 0.772 

ResNet-50 AdamW Triplet Pearson 100 Rotation 16 36 11.60 0.857 

ResNet-50 AdamW Triplet Pearson 100 Rotation, flip 16 36 16.06 0.888 

ResNet-50 AdamW Triplet Pearson 100  Rotation, flip, shift 16 36 20.96 0.920 

ResNet-152 AdamW Triplet Euclidean 300 – 1024 6 31.45 0.789 

ResNet-152 AdamW Triplet Euclidean 300 Rotation 1024 6 44.90 0.808 

ResNet-152 AdamW Triplet Euclidean 300 Rotation, flip 1024 6 58 0.842 

ResNet-152 AdamW Triplet Euclidean 300 Rotation, flip, shift 1024 6 70.35 0.878 

 
Table 7. Accuracy of existing researches on holdout set 

Approach 
Training 

augmentation 

Batch 

size 
Optimizer 

Max  

epochs 

Inf. time 

(ms) 
Acc 

ANN [6] - 64 SGD, lr: 0.001 100 0.50 0.313 

RepVGG [7] Flip, blur, saturation, contrast 32 Adam, lr: 0.0001 100 13.40 0.706 

 RepVGG_ECA [7] Flip, blur, saturation, contrast 32 Adam, lr: 0.0001 100 25.95 0.716 

ResNet-50 [8] Rotation, flip, shift, shear, zoom 32 Adam, lr: 0.001 100 5.62 0.811 

VGG16 [9] Rotation, flip, shear, skew, contrast 64 Adam, lr: 0.001 100 308.82 0.804 

Simple CNN [9] Rotation, flip, shear, skew, contrast 64 Adam, lr: 0.001 100 19.15 0.722 

 
Table 5. Accuracy of baseline model on holdout set 

Base model 
Optimizer 

(lr: 0.001) 

Max  

epochs 

Inf. time 

(ms) 
Acc 

ResNet-50 SGD 300 3.51 0.752 

ResNet-50 AdamW 300 3.50 0.738 

ResNet-152 SGD 300 12.04 0.743 

ResNet-152 AdamW 300 11.96 0.745 

 

averaged, they may not have been as effective as in 

the low dimension because they failed to capture the 

general features due to sparsity. We can see from 

Table 5 that the best accuracy of our baseline deep 

learning classification was 0.752 on ResNet-50 with 

SGD optimizer, which takes 3.51 ms to classify one 

image. SGD optimizer performed better than 

AdamW in the softmax classifier. Recent studies 

suggest that adaptive optimizer often leads to worse 

generalization performance than SGD for specific 

tasks such as image classification and language 

modeling despite their faster training speed [28]. It is 
because adaptive optimizers may have unstable and 

extreme learning rates that prevent them from 

converging to an optimal solution [28]. One more 

empirical explanation is that SGD is more locally 

unstable than adaptive optimizer at sharp minima so 

that SGD can better escape to flat minima, which is 

flat minima often generalize better than sharp minima 

[29]. However, the effectiveness of these optimizers 

may vary depending on the task and dataset used. 

4.4 Comparison with the existing researches  

We also reproduced state-of-the-art methods 

from the literature: [6, 7, 8], and [9] using our dataset 

which the results show in Table 7. All methods used 

224x224 RGB images, except for [6], which used 

50x50 images. We compared our proposed model 

with the method by Lu et al. [6], which used ANN 

with one hidden layer and 90 nodes. Their method 

suffered from severe underfitting on our dataset, 

resulting in low accuracy. This could be due to 

several reasons, such as the simplicity of their 

network architecture (since our dataset has six classes 

instead of two), the sensitivity of their feature 

extraction methods to noise information, or the 

difference in image quality between our dataset and 

theirs. Our FADMAKA model improved upon their 

method in several aspects. First, we used a CNN layer 

to automatically learn robust features from the 

images without manual feature engineering. Second, 

we used an advanced architecture model with fine-

tuning technique on pre-trained weights. Third, we 

used data augmentation to increase the diversity and 

size of our training set. The method by Lu et al. [6] 

had a fast inference time because of its simple 

architecture but the lowest accuracy among others. Ni 

et al. [7] used RepVGG, a deep and complex 

architecture and applied more data augmentation 

methods but still had lower accuracy than our 

baseline model. Their model also took a long time to 

infer, which means a high computational cost. Ni et 

al. [7] also tried RepVGG_ECA, which added an 

ECA layer after each block and after the head layer 

to enhance RepVGG. The ECA layer was a new 

technique proposed by Ni et al. [7] to improve the 

network's feature representation ability. The ECA 

method improved the accuracy, but it also made the 

inference slower. We think that their proposed 

method was overfitted on our dataset. Perhaps their 
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approach could do better on our dataset by tweaking 

some hyperparameters for regularization to prevent 

overfitting. 

Malathi et al. [8] used a similar approach to our 

baseline classifier, which used a ResNet-50 model 

with pre-trained weights from ImageNet. However, 

they used a higher image resolution of 224x224, more 

data augmentation techniques, and a larger batch size 

than us. They also added a fully connected layer with 

dropout after the base model and weight decay 0.001 

term to the optimizer to prevent overfitting. They did 

not report the details of the additional layer, so we 

used one layer with 2048 units and a dropout rate of 

0.3. The final layer had six nodes for the 

classification task. Their model had the highest 

accuracy among the state-of-the-art models we 

reproduced on our dataset, but it was still lower than 

our proposed FADMAKA model. However, this 

approach is better than our baseline classifier. Our 

baseline used the same base model with a lower 

image resolution 64x64, without the additional fully 

connected layer and dropout. Rahman et al. [9] used 

three techniques in their paper: without transfer 

learning, with transfer learning, and with fine-tuning. 

They said that fine-tuning had the highest accuracy. 

However, when we reproduced it on VGG16 with 

fine-tuning from ImageNet weights on all layers, the 

model was still underfitting even with 100 epochs 

with the hyperparameters they suggested. Then we 

tried transfer learning by freezing the VGG16 layers 

and only training the additional fully connected 

layers. We noticed the accuracy was good, but the 

inference computation was slow compared to other 

methods. The accuracy was better than our baseline 

could be because of the higher image resolution and 

more diverse data augmentation techniques. 

However, our FADMAKA model had higher 

accuracy, even with a smaller image resolution and 

inference time. Rahman et al. [9] also proposed 

Simple CNN with the same hyperparameters and 

augmentation settings, but the accuracy was not that 

high compared to our baseline classifier models. 

Overall, the FADMAKA approach had high 

accuracy but required more computational time than 

the average of state-of-the-art methods, although it 

was still faster than RepVGG_ECA and VGG16. The 

computation increased because of the additional 

augmentation process and the averaging of the latent 

representation. Also, k-NN classification required 

high computational time because it had to calculate 

the similarity between the input latent and all the 

latents in the database. We expected that we could 

increase the accuracy of our model by using the 

following methods: enhancing the image resolution 

to preserve more details, applying more varied data 

augmentation techniques during training to prevent 

overfitting, adding some additional fully connected 

layer after the base model to extract more features, 

and adding dropout to regularize the model. This 

could be seen from the pattern of the state-of-the-art 

model [8], which also used ResNet-50 as the base 

model and achieved an accuracy of 0.811, while our 

baseline classifier model only got 0.752 even with 

longer epochs. 

5. Conclusion 

We propose FADMAKA, a novel paddy pest and 

disease identification method using DML and k-NN. 

Our method extracts latent representations from input 

images and retrieves and labels similar images from 

the latent space. We evaluated our method on a 

dataset of 600 images of paddy plants with 6 classes 

of pests and diseases. Our method outperforms 

several baselines and state-of-the-art methods that 

used a softmax classifier, achieving maximum 

accuracy of 0.920. Moreover, our method can 

improve accuracy by up to 19.2% by augmenting 

input images during inference and fusing the latent 

space. We deploy our model on serverless cloud 

computing so that users can access the platform 

through their online devices. Our work contributes to 

computer vision and agriculture by providing a novel 

and effective paddy pest and disease identification 

solution. However, our work also has limitations and 

challenges that need to be addressed in future 

research, such as model complexity, scalability, 

computational time, and the addition of new domains. 

Nomenclature 

• a, b, c, d: the parameters for contrast stretching 

• α: margin parameter for Triplet 

• β1, β2: exponential decay rates 

• 𝐶: image channel where 𝐶 ∈ {𝑅, 𝐺, 𝐵} 

• 𝑑(·): distance metric 

• 𝑓(·): DML model 

• γ: angle of rotation 

• 𝐾: the number of classes 

• 𝑘: k nearest neighbor 

• ℒ𝑇: the Triplet margin loss function 

• ℒ𝑋: categorical cross-entropy loss function 

• 𝑚: radius of the square blur filter 

• 𝑚𝑡+1: first-moment of the gradient 

• 𝑁: the number of samples in a dataset 

• 𝑛: the number of images in each set 

• 𝑝, 𝑞: the pixel coordinates in each channel 

• 𝑠: predicted label by DL 

• 𝑇(·): generic transformation function 
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• 𝑣𝑡+1: second-moment of the gradient 

• 𝑤,̂ 𝑏̂: final weights and biases for DML 

• 𝑊̂, 𝐵̂: final weights and biases for DL 

• 𝑥: image of size 𝐻𝑥𝑊𝑥𝐶 

• 𝑥′: transformed image of size 𝐻𝑥𝑊𝑥𝐶 

• X: anchor input image for Triplet 

• 𝑋𝑛: negative input image for Triplet 

• 𝑋𝑝: positive input image for Triplet 

• 𝑦: image label 

• 𝑧 or 𝑧′: latent representation of size h 

• 𝑧̄ or 𝑧̄′: average of the latent representation 

• η: learning rate 

• θ𝑡: weights and biases at t 

• λ: weight decay coefficient 

• ϵ: small constant 
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