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Abstract: The inverted pendulum (IP) system, is a highly coupled, complex, nonlinear system in which the 

performance of the system is adversely affected by parameter uncertainty and outside disturbances. Therefore, these 

complications must be managed by the controllers created for such systems. The primary objective of this work is to 

develop four control structures, including integer order proportional integral derivative neural network controllers for 

inverted pendulums that deal with trajectory tracking issues. Proportional-integral-derivative neural network structure1 

(PIDNNS1), proportional-integral-derivative neural network structure2 (PIDNNS2), proportional-integral-derivative 

neural network structure3 (PIDNNS3), and proportional-integral-derivative neural network structure4 (PIDNNS4) are 

the controller structures for inverted pendulum (IP) system . The ant colony optimization (ACO) is a metaheuristic 

optimization method that is offered to optimize. the controllers' settings while minimizing the cost function. The 

proposed controllers' resilience to outside disturbances and parameter uncertainty is also tested. The results using 

MATLAB code demonstrate that the PIDNNS4 controller, which best has a reduced cost function equal to (1.177494), 

(1.273627), (1.209761) for trajectory tracking, parameters uncertainty, and disturbances rejection for the inverted 

pendulum (IP) system. and the best controller for stabilization with a low-cost function is the PIDNNS1 controller 

(1.280839).  

Keywords: Inverted pendulum (IP) system, PID controller, Recurrent neural network (RNN), Ant colony optimization 

(ACO). 

 

 

1. Introduction 

Inverted pendulum (IP), system with two degrees 

of freedom (angular pendulum movement and cart 

location) and a single control input, orthodox control 

is difficult to implement. Given how complex the 

issue is, one must choose a dynamic system to 

analyze it as a model and develop a law to govern the 

system [1].  

A cart, an inverted pendulum, an actuator unit, 

and a straight rail make up the inverted pendulum 

system. This cart has unrestricted left and right 

movement. The inverted pendulum, one of the 

fundamental dynamics and control systems, is a 

subject of control engineering because of its intrinsic 

instability and nonlinearity [2]. 

Various controllers have been suggested for the 

cart inverted pendulum by several authors. On an 

inverted pendulum, the principles of a fuzzy logic-

based controller are implemented although the 

actuator dynamics and parametric uncertainty of the 

system could not be captured by mathematical 

modeling the robustness features of the fuzzy logic 

controller could carry out the swing-up motion [3]. 

In the work, a perceptual control theory (PCT) 

controller for a two-wheeled inverted pendulum is 

directly compared for the first time with a traditional 

control approach, LQR. the PCT controller's 

performance is equivalent to that of the linear–

quadratic regulator (LQR) controller and is superior 

at disturbance rejection [4].   

The primary goal of the study is to present a 

comparison of fuzzy logic controller (FLC), radial 

basis function neural network (RBF), and integral 

sliding mode control (ISMC) adjusted with whale 

optimizer algorithm (WOA) for the control of the 

angle position and velocity of the inverted pendulum 

system. According to comparison data ISMC-WOA 

performs better than other approaches in terms of 
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settling time and overshoot [5].  

The primary goal of this effort is to create an 

efficient control system for an inverted pendulum 

system that can be used as both a mathematical model 

and a real-world prototype. The control strategy 

involves a logical combination of two traditional PID 

controllers with an appropriate metaheuristic 

optimization method, such as PSO (particle swarm 

optimization). The control technique suggested in 

this work is feasible and successful, as shown by 

simulation results on the simulink model and 

experiment results on the real-world model [6].  

Asynchronous advantage actor-critic (A3C) 

algorithm-based adaptive PID controller. First off, by 

taking advantage of the A3C structure's multi-thread 

asynchronous learning properties, the controller can 

simultaneously train numerous agents of actor-critic 

structures. Second, in order to find the best 

parameter-tuning strategy in continuous action space, 

each agent employs a multilayer neural network to 

approach the strategy function and value function. 

The simulation results show that, in comparison to 

traditional controllers, our suggested controller can 

achieve fast convergence and great adaptability [7].  

An optimized fuzzy logic controller is employed 

for the swing-up control and stabilization of a rigidly 

connected twin-arm inverted pendulum system.In 

comparison to previous state-of-the-art controllers, 

the experimental results demonstrate an improvement 

in the transient and steady-state response of the 

controlled system [8]. 

This work focuses on the construction of robust 

fractional-order PID (PID) controllers for tracking 

and stabilization of inverted pendulum (IP) systems. 

an optimization using a particle swarm (PSO). To 

demonstrate the resilience of the suggested 

controllers, simulation results are also obtained by 

including disturbances in the model [9].  

The nature of mechanical systems, such as an 

inverted pendulum (IP), involve various factors that 

can impact controller design, including nonlinear 

differential equations, gravitational forces, impacts, 

complexity, friction models, noise, parameter 

changes, external disturbances, and uncertainties. 

Despite this complexity, PID controllers have been 

widely used due to their simplicity, good 

performance, ease of installation and maintenance, 

and competitive cost-to-performance ratio.However, 

controlling nonlinear systems remains a challenging 

task. Artificial intelligence (AI) methods, particularly 

approaches based on recurrent neural network (RNN), 

offer promising solutions. RNN, with their dynamic 

nature and computational power, can accurately 

approximate any nonlinear system. Their feedback 

loop enables effective control. Traditional controller 

tuning processes are often difficult and time-

consuming, and they may not account for system 

nonlinearities or uncertainties. In contrast, intelligent 

optimization methods, such as ant colony 

optimization, have demonstrated success in 

achieving optimal tuning for PID controllers. 

Combining neural networks with optimization 

techniques enhances control technology's robustness. 

The main focus of this work is to enhance the 

resilience and adaptability of the controller design by 

combining four structures of the PID neural network 

controller (PIDNN) and utilizing the ant colony 

optimization (ACO) approach to obtain optimal 

parameter values for the controller. The contributions 

of this work can be summarized as follows: 

 

1) Integration of PIDNN structures: The study 

combines four different structures of the PID neural 

network controller, which enables a more potent and 

adaptable controller design. 

2) Resilience improvement: By utilizing the PIDNN 

structures, the controller becomes more resilient to 

complex mechanical system dynamics, including 

nonlinearities, uncertainties, and disturbances. The 

neural network component allows for better 

approximation and adaptation to varying system 

conditions, leading to improved control performance. 

3) When compared with [9] , the suggested PIDNN 

controllers' results are better than or converge to the 

best values obtained from the existing controllers.  

4) Adaptive parameter tuning: The ACO approach is 

employed to determine the optimal values for the 

PIDNN controller's parameters. 

 

The remaining sections of this work are organized 

as follows: 

Section 2: This section provides an introduction 

to the dynamic model of an inverted pendulum (IP) 

system. Section 3: The proposed ant colony 

optimization (ACO) approach is described in more 

detail. Section 4: This section presents the design of 

four inverted pendulum PID neural network 

(PIDNN) controller structures, namely controller 

structures PIDNNS1, PIDNNS2, PIDNNS3, and 

PIDNNS4. Section 5: Simulation results of the 

suggested controllers are provided in this section. 

Section 6: The main conclusions. 

2. The dynamic model of the nonlinear 

inverted pendulum system 

The pendulum control system has been regarded 

as a model application for nonlinear system control 

single-input-multiple-output (SIMO). A well-known 

control problem that is applied in colleges all over the  
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Figure. 1 The structure of the inverted pendulum 

 

world is the inverted pendulum system. Due to its 

strong non-linearities and lack of stability, it is a good 

approach to evaluating prototype controllers. The 

system comprises a cart that may freely move in the 

x direction and an inverted pole that is hinged on it 

[10, 11]. 

The inverted pendulum system is a common 

multi-variable, nonlinear, and naturally unstable 

system. Its control techniques are widely used in the 

military, aerospace, robotics, and industrial process 

areas [12]. 

Based on the study of inverted pendulum control 

systems for industrial applications. A common 

vehicle today is the Segway Transporter, also referred 

to as a unicycle. It is a vehicle made from an inverted 

pendulum system and a balancing robot. This system 

has an unknown time-varying control coefficient and 

is a nonlinear uncertain system. The axle of a wheel 

or pair of wheels that are propelled by an electric 

motor serves as the pivot of the pendulum in a 

Segway Transporter. The controller that was created 

to dynamically balance the pendulum stabilizes 

Segway movement [13]. 

A conventional inverted pendulum system is built 

on a motorized cart connected to a pendulum, also 

referred to as a stick balancer. This system's control 

input is the force F that can move the cart horizontally, 

and its outputs are the pendulum's angular position 

and the cart's horizontal position. The euler-lagrange 

is used to analyze the inverted pendulum forces. The 

euler-lagrange equation is necessary to complete our 

understanding of energy. There are two primary types 

of energy: kinetic energy and potential energy [14]. 

 

Step 1: From the free-body diagram, the 

generalized coordinate is described as follows: 

 

𝑥1 = 𝑥 + 𝑙 𝑠𝑖𝑛(𝜃)                                       (1) 

 

𝑦1 = 𝑙cos(𝜃)                                    (2) 

 

Step 2: the velocity components are: 

 

𝑥̇1 = 𝑥̇ + 𝑙𝜃̇cos (𝜃)                            (3) 

 

𝑦̇1 = −𝑙𝜃̇ sin(𝜃)                               (4) 

 
Step 3: the kinetic energy of the system is the sum 

of the kinetic energies of each mass, The kinetic 

energy general equation is: 

 

𝐾 =
1

2
𝑚𝑉2                                            (5) 

 

𝑉 is the velocity of a body. 𝑚 is the mass of the 

body.𝜔 is the angular velocity of the body. 𝐼 is the 

moment of inertia of a body. The average velocity is: 
 

𝑉2 = 𝑥̇2 + 𝑦̇2                           (6) 
 

𝜔2 = 𝜃̇2                                          (7) 
 

The kinetic energy of the cart is: 

 

𝑇1 =
1

2
𝑀𝑥̇2                             (8) 

 

The kinetic energy of the pole is: 

 

𝑇2 =
1

2
𝑚(𝑥̇1

2 + 𝑦̇1
2)                    (9) 

 

The total kinetic energy of the system is : 
 

𝑇 = 𝑇1 + 𝑇2                                 (10) 

 

𝑇 =
1

2
(𝑀 + 𝑚)𝑥̇2 + 𝑚𝑙 𝑥̇ 𝜃̇𝑐𝑜𝑠𝜃 +

1

2
𝑚𝑙2𝜃̇2   (11) 

 

Step 4: the potential energy of the system is: 

 

𝑉 = 𝑚𝑔𝑙𝑐𝑜𝑠(𝜃)                           (12) 

 

Step 5: the lagrange function is: 

 

𝐿 = 𝑇 − 𝑉                                (13) 

 

𝐿 =
1

2
(𝑀 + 𝑚)𝑥̇2 + 𝑚𝑙 𝑥̇ 𝜃̇𝑐𝑜𝑠𝜃 +  

1

2
𝑚𝑙2𝜃̇2 − 𝑚𝑔𝑙𝑐𝑜𝑠𝜃      (14) 

 

Step 6: Finally, the two euler-lagrange equations 

are 

 
𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝑥̇
) −

𝜕𝐿

𝜕𝑥
= 𝑢                          (15) 

 
𝑑

𝑑𝑡
(

𝜕𝐿

𝜕𝜃̇
) −

𝜕𝐿

𝜕𝜃
= 0                          (16) 

 

Step 7: Finding the euler-lagrange Eq. (15): 
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∂𝐿

∂𝑥̇
= (𝑀 + 𝑚)𝑥̇ + 𝑚𝑙𝜃̇𝑐𝑜𝑠𝜃                 (17) 

 
𝑑

𝑑𝑡
(

∂𝐿

∂𝑥̇
) = (𝑀 + 𝑚)𝑥̈ + 𝑚𝑙(−𝜃̇2𝑠𝑖𝑛𝜃 + 𝜃̈𝑐𝑜𝑠𝜃) 

(18) 
 

∂𝐿

∂𝑥
= 0                                 (19) 

 

(𝑀 + 𝑚)𝑥̈ + 𝑚𝑙𝜃̈cosθ − 𝑚𝑙𝜃̇2𝑠𝑖𝑛𝜃 = 𝑢     (20) 

 

𝑥̈ =
𝑚𝑙𝜃̇2 sin(𝜃)−𝑚𝑙𝜃̈ cos(𝜃)+𝑢

(𝑀+𝑚)
    (21) 

 

Step 8: Finding the euler-lagrange equation 

(16): 

 
∂𝐿

∂𝜃̇
= 𝑚𝑙𝑥̇ cos 𝜃 + 𝑚𝑙2𝜃̇                   (22) 

 
𝑑

𝑑𝑡
(

∂𝐿

∂𝜃̇
) = −𝑚𝑙𝑥̇ 𝜃̇𝑠𝑖𝑛 𝜃 + 𝑚𝑙𝑥̈ cos 𝜃 + 𝑚𝑙2𝜃̈  (23) 

 
𝜕𝐿

𝜕𝜃
= −𝑚𝑙𝑥̇𝜃̇𝑠𝑖𝑛𝜃 + 𝑚𝑔𝑙𝑠𝑖𝑛𝜃      (24) 

 

𝑚𝑙2𝜃̈ + 𝑚𝑥̈𝑙 cos 𝜃 − 𝑚𝑔𝑙 sin 𝜃 = 0              (25) 

 

𝑥̈ cos 𝜃  − 𝑔 sin 𝜃 +  𝑙𝜃̈ = 0                (26) 

 

𝜃̈ =
𝑔 sin(𝜃)−𝑥̈ cos(𝜃)

𝑙
                             (27) 

 

Step 9: Substituting Eq. (21) in Eq. (26) yields, 

 

𝜃̈ =
(𝑀+𝑚)𝑔𝑠𝑖𝑛𝜃−𝑚𝑙𝜃̇2𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃−𝑢 𝑐𝑜𝑠𝜃

𝑀𝑙+𝑚𝑙sin2𝜃
    (28) 

 

Step 10: Substituting Eq. (27) in Eq. (20) yields, 

 

𝑥̈ =
𝑚𝑙𝜃̇2𝑠𝑖𝑛𝜃−𝑚𝑔𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃+𝑢

𝑀+𝑚sin2𝜃
                 (29) 

 

Thus the state space equations are: 

 

𝑥̇1 = 𝑥2 

𝑥̇2 =
(𝑀+𝑚)𝑔𝑠𝑖𝑛𝑥1−𝑚𝑙𝑥2

2𝑠𝑖𝑛𝑥1𝑐𝑜𝑠𝑥1−𝑢 𝑐𝑜𝑠𝑥1

𝑀𝑙+𝑚𝑙sin2𝑥1
+ 𝑑1  

𝑥̇3 = 𝑥4 

𝑥̇4 =
𝑚𝑙𝑥2

2𝑠𝑖𝑛𝑥1−𝑚𝑔𝑠𝑖𝑛𝑥1𝑐𝑜𝑠𝑥1+𝑢

𝑀+𝑚sin2𝑥1
+ 𝑑2       (30) 

3. Ant colony optimization (ACO)  

The intelligence of the swarm and the behavior of 

ants in search of food inspired the ant colony 

algorithm, which is a search technique for the best 

solutions. Because the ants walk at random. The ants  
 

Table 1. The parameter of the inverted pendulum 

parameters Nominal value 

Mass of cart, 𝑀 1[ kg] 
Mass of pendulum, 𝑚 0.1[ kg] 

Length of a bar, 𝑙 0.3[ m] 
Standard gravity, 𝑔 9.81[ m/s2] 
the angle of the pole 𝑥1 

the angular velocity of the 

pole 

𝑥2 

the position of the cart 𝑥3 

the velocity of the cart 𝑥4 

the control signal 𝑢 

the disturbance 𝑑1, 𝑑2 

 

 
Table 2. Structure of solutions kept by ACOR 

 
 

 

add pheromone to the short paths that go to a good 

food source and the pheromone on the long paths 

declines or evaporates. the method is built in three 

stages: first, pheromone representation, second, 

probabilistic solution building, and third, pheromone 

updating. Overall, ACO offers interactive and 

adaptive capabilities, distributability, the ability to 

handle large-scale problems, and solution diversity. 

These characteristics make it a valuable optimization 

technique in various domains [15]. 

3.1 Pheromone representation  

The structure of solutions is kept by ACO Table 

2. 

The structure is created with random solutions 

before the algorithm begins. The ants build new 

solutions during the running of the algorithm, with 

the bad solutions being deleted and the good solutions 

being saved in the structure. The size of the structure 

is (𝑛×𝑘), which is where solutions are kept. (𝑛) is the 

dimensionality of the problem, (𝑘) is the 

dimensionality of the solution [16]. 
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Figure. 2 Flowchart of ACO algorithm 

3.2 Probability density function (PDF)  

The Gaussian function is used, which is one of the 

most common functions to represent the probability 

density function because it is easy to take samples, 

flexibility, and non-linear properties allow for more 

flexible control of weights. A Gaussian kernel is 

indicated by the symbol 𝐺𝑖(𝑥)  

 

𝐺𝑖(𝑥) = ∑  𝑘
𝑙=1 𝜔𝑙

1

𝜎𝑙
𝑖√2𝜋

𝑒
−

(𝑥−𝜇𝑖
𝑖)

2

2𝜎𝑙
𝑖

              (31) 

3.3 Flowchart of ACO algorithm 

The algorithm ACO implementation steps [16] 

and the flowchart in Fig. 4 are as follows: 

4. PID neural network 

PID (proportional-integral-derivative) controller 

is a widely used feedback control algorithm in 

engineering applications. It is a simple but effective 

way to control a system by adjusting a control 

variable based on the error between the desired set-

point and the actual process variable [17]. 

Using a neural network in conjunction with a PID 

controller has several benefits, including increased 

control performance, resilience, adaptability, reduced 

tuning effort, and scalability in complicated control 

systems. It is important to keep in mind that creating 

and training a PID neural network can be difficult and 

calls for knowledge of both control theory and neural 

networks. Additionally, the quantity and quality of 

the training data may affect the network's 

performance, and the complexity of the network may 

raise the processing needs of the control system [18-

20]. Therefore the IP system is proposed to be 

controlled by four structures of PIDNN controllers.   

4.1 PIDNNS1 controller 

The PIDNNS1 controller is shown in Fig. 3. In 

this case, reference compensation technique (RCT) 

corrects the system being controlled by the stated 

controllers by closing an additional outside loop. [21]. 

Therefore using the following equations: 

Layer 1: 

 

𝐼𝑖(𝑛) = [𝑒𝜃(𝑡) , 𝑒𝜃(𝑡 − 1), 𝑒𝜃(𝑡 − 2), 𝑒𝑥(𝑡), 𝑒𝑥(𝑡 −
1), 𝑒𝑥(𝑡 − 2)]       (32) 

 

Layer 2: 

 

𝐻𝑗(𝑛) = 𝑓𝑗 (  ∑ 𝑊𝑗𝑖𝑖 ∙ 𝐼𝑖(𝑛) + 𝑏𝑗  )           (33) 

 

𝑓𝑗 (𝐻𝑗(𝑛)) =
1−exp(−𝐻𝑗(𝑛))

1+exp(−𝐻𝑗(𝑛))
                (34) 

 

Layer 3: 

 

𝑂𝑘(𝑛) = ∑ 𝑉𝑘𝑗𝑗 ∙ 𝐻𝑗(𝑛) + 𝑏𝑘               (35) 

 

The control input for a pendulum angle: 

 

𝑢𝜃 = 𝑘𝑃𝜃𝑒𝜃(𝑡) + 𝑘𝑖𝜃 ∫  𝑒𝜃(𝑡)𝑑𝑡 + 𝑘𝑑𝜃𝑒̇𝜃(𝑡) + O𝜃   
(36) 

 
O𝜃 = 𝑘𝑝𝜃𝑂1 + 𝑘𝑑𝜃𝑂2 + 𝑘𝑖𝜃𝑂3                (37) 

 

The control input for the cart position: 

 

𝑢𝑥 = 𝑘𝑝𝑥𝑒𝑥(𝑡) + 𝑘𝑖𝑥 ∫  𝑒𝑥(𝑡)𝑑𝑡 + 𝑘𝑑𝑥𝑒̇𝑥(𝑡) + O𝑥     

(38) 

 

O𝑥 = 𝑘𝑖𝑥𝑂4 + 𝑘𝑑𝑥𝑂5 + 𝑘𝑝𝑥𝑂6             (39) 

4.2 PIDNNS2 controller 

The architecture with at least one feedback link, 

as seen in Fig. 4. The feedback architecture, also 

known as a dynamic neural network, has one or more 

feedback links whose state changes over time in each 

neuron. The network's capacity for learning and  
 



Received:  September 5, 2023.     Revised: September 28, 2023.                                                                                     788 

International Journal of Intelligent Engineering and Systems, Vol.16, No.6, 2023           DOI: 10.22266/ijies2023.1231.65 

 

Table 3. Define the component of PIDNNS1  

Description Comment 

Output of Layer 1, layer2, and layer3 𝐼𝑖 , 𝐻𝑗  , 𝑂𝑘  

Weights between layer1, and layer2 𝑊𝑗𝑖 

Weights between layer2, and layer3 𝑉𝑘𝑗 

Bias weight for layer2, and layer3 𝑏𝑗 , 𝑏𝑘 

The activation function is the 

hyperbolic tangent function 

𝑓𝑗 

 

 

performance is significantly impacted by the 

presence of a feedback connection. The state of a 

neuron in a feedback neural network depends not 

only on the current input signal but also on prior 

states of the neuron because feedback neural 

networks' weights are programmable [22].  

 

Layer 1:  

 

𝐼𝑖(𝑛) = [𝑒𝜃(𝑛) , 𝑒𝑥(𝑛)]                      (40) 

 

Layer 2: 

 

𝑛𝑒𝑡1(𝑛) = 𝑘𝑝𝜃(𝑒𝜃(𝑛))                                     (41) 

 

𝑛𝑒𝑡2(𝑛)  = 𝑘𝑖𝜃 ∙ 𝑠𝑡 ∙ 𝑒𝜃(𝑛) + 𝐼𝜃(𝑛 − 1)        (42) 

 

𝑛𝑒𝑡3(𝑛) = 𝑘𝑑𝜃(𝑒𝜃(𝑛) − 𝑒𝜃(𝑛 − 1))/𝑠𝑡      (43) 

 

 𝑛𝑒𝑡4(𝑛) = 𝑘𝑝𝜃(𝑒𝑥(𝑛))                                 (44) 

 

𝑛𝑒𝑡5(𝑛)  = 𝑘𝑖𝑥 ∙ 𝑠𝑡 ∙ 𝑒𝑥(𝑛) + 𝐼𝑥(𝑛 − 1)        (45) 

 

𝑛𝑒𝑡6(𝑛) = 𝑘𝑑𝑥(𝑒𝑥(𝑛) − 𝑒𝑥(𝑛 − 1))/𝑠𝑡       (46) 

 

Layer 3: 

 

𝐻𝑗(𝑛) = 𝑓𝑗(  ∑ 𝑊𝑗𝑖𝑖 ∙ 𝑛𝑒𝑡𝑖(𝑛) ) + 𝐻𝑗(𝑛 − 1) +

ℎ𝑗(n − 1)   (47) 

 

 𝑓𝑗(𝑥) =
6

1+𝑒(−𝑥) − 3                    (48) 

 

Layer 4: 

 

ℎ𝑘(𝑛) = 𝑔𝑘 (∑ 𝑉𝑘𝑗𝑗 ∙ 𝐻𝑗(𝑛)) + ℎ𝑘(n − 1)   (49) 

 

𝑔𝑘(𝑥) =
6

1+𝑒(−𝑥) − 3                       (50) 

 

Layer 5: 

 

𝑂𝑙(𝑛) = ∑ 𝑍𝑙𝑘𝑘 ℎ𝑘(𝑛)                              (51) 

 

Table 4. Define the component of PIDNNS2 

Description Comment 

Output of Layer1, layer2, 

layer3,layer4,layer5 
𝐼𝑖 , 𝑛𝑒𝑡𝑖  , 𝐻𝑗  , ℎ𝑘, 𝑂𝑙  

Weights between layer1, and 

layer2 

𝑘𝑝𝑥  , 𝑘𝑖𝑥 , 𝑘𝑑𝑥 , 
𝑘𝑝𝜃  , 𝑘𝑖𝜃 , 𝑘𝑑𝜃  , 

Weights between layer2, and 

layer3 
𝑊𝑗𝑖 

Weights between layer3, and 

layer4 
𝑉𝑘𝑗 

Weights between layer4, and 

layer5 

𝑍𝑙𝑘 

Sigmoid activation function  𝑓𝑗 , 𝑔𝑘 

Step size 𝑠𝑡 

 

 

Control signal: 

 

𝑢(𝑛) = 𝑂1(𝑛) + 𝑂2(𝑛)                        (52) 

4.3 PIDNNS3 controller 

The context nodes in the Elman network have 

self-connections, as in Fig. 5 which makes it also 

sensitive to the history of input data. This property is 

highly helpful in modeling dynamic systems. There 

have been other models put forth that enhance the 

original Elman networks. By introducing 

feedforward connections between the context nodes 

and the output nodes, the dynamic properties possess 

integral (I) dynamic features by nature, and 

convergence speed is improved [23]. 

 

Layer 1:  

 

𝐼𝑖(𝑛) = [𝑒𝜃(𝑛) , 𝑒𝑥(𝑛)]                                (53) 

 

Layer 2: 

 

𝑛𝑒𝑡1(𝑛) = 𝑘𝑝𝜃(𝑒𝜃(𝑛))                                         (54) 

 

𝑛𝑒𝑡2(𝑛) = 𝑘𝑖𝜃 ∙ 𝑠𝑡 ∙ 𝑒𝜃(𝑛) + 𝐼𝜃(𝑛 − 1)              (55) 

 

𝑛𝑒𝑡3(𝑛) = 𝑘𝑑𝜃(𝑒𝜃(𝑛) − 𝑒𝜃(𝑛 − 1))/𝑠𝑡             (56) 

 

𝑛𝑒𝑡4(𝑛) = 𝑘𝑝𝜃(𝑒𝑥(𝑛))                                         (57) 

 

𝑛𝑒𝑡5(𝑛) = 𝑘𝑖𝑥 ∙ 𝑠𝑡 ∙ 𝑒𝑥(𝑛) + 𝐼𝑥(𝑛 − 1)               (58) 

 

𝑛𝑒𝑡6(𝑛) = 𝑘𝑑𝑥(𝑒𝑥(𝑛) − 𝑒𝑥(𝑛 − 1))/𝑠𝑡             (59) 

 

Layer 3: 

 

𝐻𝑗(𝑛) = 𝑓𝑗  (∑ 𝑊𝑗𝑖𝑖 ∙ 𝑛𝑒𝑡𝑖(𝑛)) + ∑ 𝑄𝑗𝑐𝑐 𝐶𝑐
𝐻(𝑛)  (60) 
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Table 5. Define the component of PIDNNS3 

Description Comment 

Output of Layer1, layer2, 

layer3,layer4,layer5, and Layer6 
𝐼𝑖 , 𝑛𝑒𝑡𝑖 , 𝐻𝑗  , 

ℎ𝑘 , 𝑂𝑙 , 𝐶𝑐
𝐻 

Weights between layer1, and layer2 𝑘𝑝𝑥  , 𝑘𝑖𝑥  , 𝑘𝑑𝑥  , 
𝑘𝑝𝜃  , 𝑘𝑖𝜃 , 𝑘𝑑𝜃  

Weights between layer2, and layer3 𝑊𝑗𝑖 

Weights between layer3, and layer4 𝑉𝑘𝑗 

Weights between context, and layer3 𝑄𝑗𝑐 

Weights between context, and layer4 𝑅𝑘𝑐 

Weights between layer4, and layer5 𝑍𝑙𝑘 

Sigmoid activation function 𝑓𝑗  , 𝑔𝑘 

Feedback gained from the self 

connections 

𝛼 

Step size 𝑠𝑡 

 

 

𝑓𝑗(𝑥) =
6

1+𝑒(−𝑥) − 3                                       (61) 

 

Layer 4: 

 

ℎ𝑘(𝑛) = 𝑔𝑘  (∑ 𝑉𝑘𝑗𝑗 ∙ 𝐻𝑗(𝑛)) + ∑ 𝑅𝑘𝑐𝑐 𝐶𝑐
𝐻(𝑛)   (62) 

 

𝑔𝑘(𝑥) =
6

1+𝑒(−𝑥) − 3                                       (63) 

 

Layer 5: 

 

𝑂𝑙(𝑛) = ∑ 𝑍𝑙𝑘𝑘 ℎ𝑘(𝑛)                                     (64) 

 

Layer 6: context layer 

 

𝐶𝑐
𝐻(𝑛) = 𝐻𝑗(𝑛 − 1) +  𝛼𝐶𝑐

𝐻(𝑛 − 1)            (65) 

 

Control signal: 

 

𝑢(𝑛) = 𝑂1(𝑛) + 𝑂2(𝑛)                            (66) 

4.4 PIDNNS4 controller 

The controller Structure4 (S4) is shown in Fig. 6. 

The Jordan-Elman recurrent neural network (RNN), 

changes the fundamental RNN architecture by 

including a feedback connection from the network's 

output back into the hidden layer. This feedback 

connection speeds up learning by enabling the 

network to handle sequential data more skillfully and 

to keep a short-term recall of prior inputs [24].  

 

Layer 1: 

 

𝐼𝑖(𝑛) = [𝑒𝜃(𝑛) , 𝑒𝑥(𝑛)]                           (67) 

 

Layer 2: 

𝑛𝑒𝑡1(𝑛) = 𝑘𝑝𝜃(𝑒𝜃(𝑛))                             (68) 

 

𝑛𝑒𝑡2(𝑛)  = 𝑘𝑖𝜃 ∙ 𝑠𝑡 ∙ 𝑒𝜃(𝑛) + 𝐼𝜃(𝑛 − 1)         (69) 

 

𝑛𝑒𝑡3(𝑛) = 𝑘𝑑𝜃(𝑒𝜃(𝑛) − 𝑒𝜃(𝑛 − 1))/𝑠𝑡           (70) 

 

𝑛𝑒𝑡4(𝑛) = 𝑘𝑝𝜃(𝑒𝑥(𝑛))                                         (71) 

 

𝑛𝑒𝑡5(𝑛)  = 𝑘𝑖𝑥 ∙ 𝑠𝑡 ∙ 𝑒𝑥(𝑛) + 𝐼𝑥(𝑛 − 1)             (72) 

 

𝑛𝑒𝑡6(𝑛) = 𝑘𝑑𝑥(𝑒𝑥(𝑛) − 𝑒𝑥(𝑛 − 1))/𝑠𝑡             (73) 

 

Layer 3: 

 

(𝑛) = 𝑓𝑗  (∑ 𝑊𝑗𝑖𝑖 ∙ 𝑛𝑒𝑡𝑖(𝑛) + ∑ 𝑄𝑗𝑐𝑐 𝐶𝑐(𝑛) +

∑ 𝑅𝑗𝑚𝑚 𝐽𝑚(𝑛))  (74) 

 

𝑓𝑗(𝑥) =
6

1+𝑒(−𝑥) − 3                                    (75) 

 

Layer 4: 

 

ℎ𝑘(𝑛) = 𝑔𝑘  (∑ 𝑉𝑘𝑗𝑗 ∙ 𝐻𝑗(𝑛) + ∑ 𝐸𝑘𝑟𝑟 𝑆𝑟(𝑛))    (76) 

 

𝑔𝑘(𝑥) =
6

1+𝑒(−𝑥) − 3                                 (77) 

 

Layer 5: 

 

𝑂𝑙(𝑛) = ∑ 𝑍𝑙𝑘𝑘 ∙ ℎ𝑘(𝑛)                                (78) 

 

Layer 6: 

 

𝐶𝑐(𝑛) = 𝐻𝑗(𝑛 − 1) +  𝛼𝐶𝑐
𝐻(𝑛 − 1)              (79) 

 

Layer 7: 

 

𝐽𝑚(𝑛) = ℎ𝑘(𝑛 − 1) +  𝛽𝐽𝑚(𝑛 − 1)             (80) 

 

Layer 8: 

 

𝑆𝑟(𝑛) = ℎ𝑘(𝑛 − 1) +  𝜂𝑆𝑟(𝑛 − 1)           (81) 

 

Control action: 

 

𝑢(𝑛) = 𝑂1(𝑛) + 𝑂1(𝑛)                              (82) 

5. Simulations results and performance 

analysis  

The trajectory tracking for the IP system (nominal 

case), The suggested controllers are simulated using 

a MATLAB program with a step size of 0.001. The  
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(a) 

 
(b) 

Figure. 3 (a) PIDNNS1 controller, (b) Neural network controller 
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Figure. 4 PIDNNS2 controller 

 

 
Figure. 5 PIDNNS3 controller 
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(a) 

 
(b) 

Figure.6 (a) PIDNNS4 Controller (a) PIDNNS4 Controller1, (b) PIDNNS4 Controller2 
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Table 6. Define the component of PIDNNS4  

Description Comment 

Layer 1, Layer2, Layer3, Layer4, 

Layer5, Layer6, Layer7, and Layer8 
𝐼𝑖 , 𝑛𝑒𝑡𝑖 , 𝐻𝑗  , ℎ𝑘, 

𝑂𝑙 , 𝐶𝑐  𝐽𝑚, 𝑆𝑟  

The weights between Layer1, and 

Layer2 

𝑘𝑝𝑥  , 𝑘𝑖𝑥  , 𝑘𝑑𝑥  , 
𝑘𝑝𝜃  , 𝑘𝑖𝜃 , 𝑘𝑑𝜃 

Weights between Layer2, and 

Layer3 
𝑊𝑗𝑖 

Weights between Layer3, and 

Layer4 
𝑉𝑘𝑗 

Weights between Layer4, and 

Layer5 

𝑍𝑙𝑘 

Weights between Layer3, and 

Layer6 
𝑄𝑗𝑐   

Weights between Layer3, and 

Layer7 

𝑅𝑘𝑐 

Weights between Layer4, and 

Layer8 

𝐸𝑘𝑟  

Feedback gain to the self-connection 

of Layer6, Layer7, and layer8 

𝛼, 𝛽, 𝜂 

Sigmoid activation function 𝑓𝑗  , 𝑔𝑘 

Step size 𝑠𝑡 

 
Table 7. Weight of the cost function used with IP 

value weights 

1 𝑤1 

1 𝑤2 

0.05 𝑤3 

 
Table 8. Parameters of ACO used with IP  

Value Parameters 

40 Population size  (𝑚) 

100 Size of the archive ( 𝑘). 

0.5 Intensification factor  (𝑞) 

1 Deviation-distance ratio   (𝜉) 

 
Table 9. Parameters of controllers used with IP 

Value Parameters 

PIDNNS1=118 Number of parameters 

PIDNNS2=56 

PIDNNS3=80 

PIDNNS4=128 

[−150, 150] 𝑘𝑝, 𝑘𝑑, 𝑘𝑖 
[−1, 1] Weight of the neural network 

 

 

proposed PIDNN controller's commands can be 

altered to satisfy design requirements and provide the 

user with a variety of control limit alternatives. 

Additionally, the cost function (J) performance index 

is used in the test. 

 

𝐽 = ∫ [ 𝑤1 × 𝜃2(𝑡) + 𝑤2 × 𝑥2(𝑡) + 𝑤3 × 𝑢2(𝑡)]𝑑𝑡
𝑇

0
   

(83) 

 

The weights of the cost function are illustrated in  
 

Table 10. Cost function of PIDNN for tracking IP 

Controller Cost function ( J ) 

PIDNNS1 1.189836 

PIDNNS2 1.218626 

PIDNNS3 1.185051 

PIDNNS4 1.177494 

 

 

 
Figure. 7 Pendulum angle for trajectory tracking of IP 

 

 
Figure. 8 Cart position for trajectory tracking of IP 

 

 
Figure. 9 Control action for trajectory tracking of IP 
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Table 11. Cost function of PIDNN for stabilization IP 

Controller Cost function ( J ) 

PIDNNS1 1.280839 

PIDNNS2 1.457746 

PIDNNS3 1.301771 

PIDNNS4 1.284467 

 

 
Figure. 10 Pendulum angle for stabilization of IP 

 

 
Figure. 11 Cart position for stabilization of IP 

 

 
Figure. 12 Control action for stabilization of IP 

 

Table 7. In terms of the starting point, the parameters 

of ACO optimization are illustrated in Table 8. All 

algorithms have the same parameters and the 

controller's parameter in Table 9. 

Pendulum angle 𝜃(𝑡) and cart position 𝑥(𝑡) have 

ranges of {−0.5 , 0.5}𝑟𝑎𝑑  and {−0.5 , 0.5}𝑚 , and 

u(t) {−20 , 20}𝑁 respectively. The IP system initial 

condition  𝜃 = 0.5 𝑟𝑎𝑑 , 𝑥 = 0𝑚 Output 

desired  𝜃𝑑 = 0 𝑟𝑎𝑑 , 𝑥𝑑 = 0.3 sin(0.05𝜋𝑡) 𝑚 , and 

the simulation time is set to 100 𝑠𝑒𝑐. Figs. 7, 8, and 

9 show the simulation results for controllers. The 

corresponding cost function (J) of these controllers 

as illustrated in Table 10. 

In this case, (𝜃)  is minimum settling time, 

overshoot in the event of PIDNNS3, and PIDNNS2, 

respectively. (𝑥)  is minimum settling time, 

overshoot, and oscillation in the PIDNNS3, the 

minimum cost function ( 𝐽)  in the PIDNNS4 

controller. 

5.1 Robustness analysis of the controllers  

a. Stabilization  

In this case, assuming initial conditions =
0.5 𝑟𝑎𝑑 , 𝑥 = 0𝑚 , the output desired  𝜃𝑑 = 0 𝑟𝑎𝑑 ,
𝑥𝑑 = 0𝑚, and simulation time is set to 100 𝑠𝑒𝑐. The 

inverted pendulum system's reaction under the 

PIDNN controllers is shown in Figs. 10, 11 and 12. 

The corresponding cost function (J)  of these 

controllers is illustrated in Table 11. 

In this test, (𝜃)  is the minimum settling time, 

overshoot in the event of  PIDNNS4, and PIDNNS2, 

respectively. (𝑥)  is the minimum settling time, 

overshoot, and oscillation in the PIDNNS3, the 

minimum cost function ( 𝐽)  in the PIDNNS1 

controller. 
 

b. Uncertainty in pendulum mass   

Although the pendulum mass is uncertain, this 

test is similar to the previous one (nominal case) but 

with uncertainty in pendulum mass. One potential 

source of uncertainty is a 50% increase in pendulum 

mass. Figs. 13, 14, and 15 show pendulum 

performance with PIDNN controllers in the presence 

of this uncertainty. The corresponding cost function 

(J) of these controllers is illustrated in Table 12. 

In this test, (𝜃)  is minimum settling time, 

overshoot in the event of  PIDNNS3, and PIDNNS2, 

respectively. (𝑥)  is the minimum settling time, 

overshoot, and oscillation in the PIDNNS3, the 

minimum cost function ( 𝐽)  in the PIDNNS4 

controller. 

 

c. External disturbance  

Following the addition of the angle disturbance 

value equal to 0.06 rad at a time equal to 30 sec, the 

response of the inverted pendulum system using the 

PIDNN controllers is depicted in Figs. 16, 17, and 18. 

the corresponding cost function (J)  of these 

controllers as in Table 13.   
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Table 12. Cost function of PIDNN for the uncertainty IP 

Controller Cost function ( J ) 

PIDNNS1 1.290245 

PIDNNS2 1.606191 

PIDNNS3 1.281229 

PIDNNS4 1.273627 

 
 

 
Figure. 13 Pendulum angle for the uncertainty of IP 

 

Figure. 14 Cart position for the uncertainty of IP 
 

 
Figure. 15 Control action for the uncertainty of IP 

 

 

 

Table 13. Cost function of PIDNN for disturbance of IP 

Controller Cost function ( J ) 

PIDNNS1 1.242601 

PIDNNS2 26.358405 

PIDNNS3 1.222391 

PIDNNS4 1.209761 

 

 

 
Figure. 16 Pendulum angle for disturbance of IP 

 

 
Figure. 17 Cart position for disturbance of IP 

 

 
Figure. 18 Control action for disturbance of IP 
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Table 14. Comparing the values of the cost function   

Controller Cost function 

PIDNNS1 in a case study. 1.189836 

PIDNNS2 in a case study. 1.218626 

PIDNNS3 in a case study. 1.185051 

PIDNNS4 in a case study. 1.177494 

PID - PSO in [9]. 1.8449 

FOPID-PSO in [9]. 1.7131 

 

 

In this test, (𝜃)  is minimum settling time, 

overshoot in the event of PIDNNS3. (𝑥) is minimum 

settling time, overshoot, and oscillation in the 

PIDNNS3, and PIDNNS2 is unstable. the minimum 

cost function ( 𝐽) in the PIDNNS4 controller. 

5.2 Discussion and comparison 

Current study outperforms other controllers such 

as PID controller with optimization for particle 

swarms (PID-PSO), FOPID controller with 

optimization for particle swarm (FOPID-PSO) in 

terms of trajectory tracking, lower cost function, and 

energy efficiency , this aspect is crucial. The results 

indicate that proposed methodology achieves 

superior performance compared to these controllers. 

Additionally, current study shows that the system 

reaches stability faster and experiences reduced 

overshoot compared to the other controllers. This 

characteristic is essential for ensuring stable and 

precise control of the inverted pendulum system. This 

work's primary contribution is to lower the cost 

function and energy. Table 14 shows the 

corresponding cost function (J) of  trajectory tracking 

for various controllers compare with PID, and FOPID 

controllers. 

6. Conclusion 

In this work, four PIDNN controller structures 

were proposed for controlling an inverted pendulum 

(IP) system. The metaheuristic ACOR is used to 

adjust the controller parameters and neural network 

weights. In terms of model uncertainty, disturbance 

rejection, and initial circumstances, the robustness of 

these controllers has also been examined. The results 

show that the PIDNN controllers, of which the best is 

the PIDNNC4, have a respectable ability to quickly 

minimize the variation between real and desired 

routes without chattering in control signals.  
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List of notations 

Abbreviat

ion 

Description 

IP system 

𝑚 Mass of pendulum 

𝑀 Mass of cart 

𝑙 Length of a bar 

𝑔 Standard gravity 

𝑥1 = 𝜃 the angle of the pendulum 

𝑥2 = 𝜃̇ the angular velocity 

𝑥3 = 𝑥 is the location of the cart 

𝑥4 = 𝑥̇ is the velocity of the cart 

𝑢  = 𝐹 Control action. 

𝑑1, 𝑑2 disturbance 

Ant Colony Optimization 

𝐺𝑖(𝑥) Gaussian functions 

𝜎𝑙
𝑖 standard deviation 

𝜇𝑖
𝑖 the mean 

𝑃𝑙  probability 

𝑚 Population size 

 𝑘 Size of the archive 

𝑞 Intensification factor 

𝜉 Deviation-distance ratio 

Controller 

Kp Proportional Gain 

Kd Derivative Gain 

Ki Integral Gain 

Cost function 

𝐽 the cost function performance index 
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