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Abstract: In geotechnical engineering, the stability analysis of reinforced soil slopes is important to ensure the 

safety and longevity of infrastructures. In this study, a novel multi-objective particle swarm optimized RF-SVR 

(random forest and support vector regression) model aimed to evaluate the stability of reinforced soil slopes. The 

proposed Hybrid RF-SVR-MOPSOA model combines the advantages of both machine learning techniques and 

optimization algorithms and offers enhanced predictive accuracy and efficiency. Assessing the model's effectiveness 

involves proposed model was compared with three traditional regression models: Elastic net regression (ENR), ridge 

regression (RR), and lasso regression (LR). Various performance assessment parameters and ROC curve plots were 

employed to determine the most suitable model for reinforced soil slope stability analysis. The findings indicate that 

the proposed hybrid RF-SVR-MOPSOA model demonstrates superior performance compared to other traditional 

regression models. This innovative approach significantly expands the possibilities for enhancing the assessment of 

slope stability and ensuring safer and more resilient infrastructural development. 

Keywords: Soil stability analysis, Factor of safety, Multi-objective particle swarm optimization, Support vector 

regression, Random forest regression. 

 

 

1. Introduction 

In the field of civil engineering, reinforced soil 

slopes are common usage for stabilizing steep 

ground and mitigating soil erosion [1, 2]. The 

analysis of slope stability is of utmost importance to 

prevent potential failures and maintain long-term 

performance [3-5]. The assessment of safety and 

performance for slope structures has become an 

essential focus in geotechnical engineering, leading 

to increased attention on reinforced soil slope 

stability analysis. Structures such as retaining walls, 

embankments, and natural slopes frequently 

experience issues like soil erosion, groundwater 

infiltration, and instability [6]. Limit equilibrium 

and finite element methods are conventional 

approaches used to analyze slope stability, but they 

often have limitations. These methods may not 

adequately address the complex and interconnected 

factors influencing slope stability [7]. To address 

these limitations, this study has investigated the 

integration of optimization techniques with machine 

learning algorithms, aiming to develop more precise 

and efficient models for slope stability analysis. 

This study introduces a novel approach for 

reinforced soil slope stability analysis, combining 

the power of multi-objective particle swarm 

optimization (PSO) with the robustness of random 

forest support vector regression (RF-SVR). The 

proposed model aims to simultaneously optimize 

multiple objectives related to slope stability, such as 

the factor of safety, taking into account the influence 

of reinforcement parameters. The effectiveness of 

addressing multi-objective optimization problems is 

demonstrated by the particle swarm optimization 

algorithm, which draws inspiration from the 

collective actions of bird flocks or fish schools. [8-

10]. This enables those in charge of making 

decisions to choose the most fitting solution 

according to their particular needs. The random 
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forest support vector regression technique models 

the complex relationships between input variables 

and slope stability indicators. RF-SVR combines the 

ensemble learning capabilities of random forest with 

the robustness of support vector regression, enabling 

accurate predictions even with noisy and high-

dimensional data. The following represents the 

literature review based on this study. 

Many researchers have traditionally determined 

soil slope stability using conventional methods [11-

14]. Typically, conventional methods are 

constrained to specific failure surface shapes, such 

as circular or non-circular surfaces. As a result, their 

capacity to analyze slopes with irregular shapes or 

intricate geometries is restricted. Traditional 

methods may struggle to handle complex loadings 

or dynamic forces that can influence slope stability, 

such as seismic or cyclic loading. Sharma et al. [15] 

employed the FEM to examine the stability of steep 

slopes reinforced with soil. Also, the impact of 

altering soil parameters, precisely the impact of 

cohesion and angle of internal friction on 

embankments with steep slopes was investigated 

with varying heights (6m-30m). The study found 

that using a tiered structure or adding a berm 

slightly improved the safety factor concerning the 

overall stability and significantly decreased forces.   

Karthik et al. [16] performed a sensitivity 

analysis on slope stability utilizing the FEM. They 

focused on a homogeneous slope with c-ϕ soil 

analyzing to evaluate the influence of different 

parameters on stability of slope. Additionally, the 

research investigated how various constitutive 

models affect the slope's FoS. The results showed 

that the slope FoS was influenced by slope height, 

slope angle, soil friction angle, basis weight and 

cohesion. Halder et al. [17] conducted a 

comprehensive analysis of slope stability using the 

FEM. Also analyzed the stability of slopes with four 

different non-homogeneous soil types and assessed 

the safety factors for varying heights of slope. 

Afterwards, the researchers performed a similar 

analysis on the slopes using homogeneous soil and 

compared the outcomes. The result found that, with 

an increase in the height of the slopes, the factor of 

safety decreased. Various authors have conducted 

soil slope analyses based on different parameters 

and reported improved results [18-24]. 

In this work by Świtała et al. [18], a coupled 

hydro-mechanical model for root-reinforced soils 

was developed. The study focuses on the 

implementation of a numerical model that considers 

the influence of plant roots on the mechanical and 

hydrological behavior of soil. The constitutive 

model is based on a Cam-clay model for unsaturated 

soils, incorporating the expansion of the yield 

surface dependent on soil suction and plant root 

reinforcement. The model was successfully 

implemented in a finite element code, and its 

performance was demonstrated through various 

numerical examples. Sungkar et al. [19] conducted a 

slope stability analysis using both Bishop and FEM. 

The study evaluates the safety factor of a landslide-

prone area on a national road. The existing 

conditions were assessed using the Bishop method 

and validated with FEM. The study also proposes 

reinforcement strategies using sheet piles, analyzing 

their impact on the safety factor. The results indicate 

the need for reinforcement to prevent landslides, 

with variations in sheet pile placement affecting the 

safety factor after reinforcement. 

Sui et al. [20] investigated the stability of 

ecological slopes using a 3D FEM. Focusing on the 

Longlang Expressway construction project, the 

study analyzed the effects of grass and shrub plant 

roots on slope stability under different rainfall 

events. Results demonstrated the varying 

contributions of herbaceous and shrub plants to 

slope safety factor under different rainfall intensities 

and durations. The findings provide a theoretical 

basis for ecological slope protection technology. 

Villalobos and Villalobos [21] explored the effect of 

nail spacing on the global stability of soil-nailed 

walls. The study utilized both limit equilibrium and 

FEM to assess soil-nailed wall stability. The 

research highlighted that nail spacing can influence 

the global factor of safety under certain conditions, 

emphasizing the importance of careful assessment, 

especially for steep walls and close nail spacing. 

The FEM was recommended for soil nailing designs 

for its improved reliability. Lin et al. [22] 

investigated the effects of dilatancy angle on slope 

stability using the 3D FEM strength reduction 

technique. The study constructed a 3D slope model 

using PLAXIS software, considering the impact of 

dilatancy angle on convergence and failure 

mechanisms. The research revealed that dilatancy 

angles have a significant effect on slope stability, 

emphasizing the need for engineers to consider these 

angles in stability analyses. 

Pandey et al. [23] conducted numerical studies 

on the behavior of slopes reinforced with soil nails. 

Using FEM, the study analyzed the response of soil 

slopes with and without soil nails under static and 

dynamic loading, considering factors such as slope 

angle and seismic conditions. The investigation 

provided insights into failure patterns and internal 

reactions in soil nails, contributing to the 

understanding of reinforced soil slope behavior. 

Mohamed et al. [24] presented a FEM of the soil-
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nailing process in nailed-soil slopes. The study 

simulated various stages of the soil-nailing process 

using PLAXIS software, considering different soil 

parameters. The research investigated the 

performance of the soil-nailing process during 

construction and under varying overburden pressure 

and soil density, demonstrating the potential of the 

FEM to simulate field scenarios and guide 

construction and maintenance practices. 

Based on the literature survey conducted, several 

research gaps have been identified within the 

analyzing the stability of reinforced soil slopes. The 

majority of existing studies have focused on analysis 

of soil slope stability employing both traditional and 

FEM, while there is a lack of research specifically 

dedicated to reinforced soil slope stability analysis. 

Studies about individual or hybrid regression models 

for reinforced soil slope stability analysis are still 

rare. As reinforced soil stability analysis involves 

multiple influencing factors and parameters, the 

utilization of novel optimization algorithms can 

enhance the accuracy and efficiency of the models. 

The literature review suggests a lack of studies 

incorporating such algorithms to optimize the 

regression models. RF and SVR models have been 

widely used due to their ability to handle non-linear 

relationships and capture complex patterns in the 

data. Particle swarm optimization (PSO) has also 

been successfully applied in optimizing various 

engineering problems. However, the integration of 

multi-objective optimization with RF and SVR for 

reinforced soil slope stability analysis is relatively 

unexplored in the literature. 

To address these research gaps, the present study 

aims to develop a reinforced soil slope stability 

analysis using a hybrid regression model with a 

novel optimization algorithm. By combining 

regression modeling techniques and advanced 

optimization methods, this study seeks to improve 

the accuracy and efficiency of analyzing reinforced 

soil slopes. Integrating RF and SVR techniques can 

enhance the predictive capability and provide a 

more comprehensive analysis of reinforced soil 

slope stability. Additionally, the proposed model can 

address the limitations of traditional methods by 

considering multiple interacting factors. Therefore, 

the research gap lies in the development and 

evaluation of a novel multi-objective particle swarm 

optimized RF-SVR model for reinforced soil slope 

stability analysis, which can contribute to the 

advancement of geotechnical engineering practices. 

1.1 Problem statement and motivation: 

The stability analysis of reinforced soil slopes 

involves determining the critical factors that affect 

slope failure, such as soil properties, external 

loading conditions, and the effectiveness of the 

reinforcement system. Traditional methods for slope 

stability analysis often rely on simplified 

assumptions or empirical equations, which may lead 

to inaccuracies and conservative designs. 

Furthermore, the complex nature of the problem, 

involving multiple interacting variables, poses a 

significant challenge in accurately modeling and 

predicting the behavior of reinforced soil slopes.  

Therefore, there is a need for an innovative 

approach that can address these challenges and 

provide a more reliable and accurate slope stability 

analysis. This research aims to improve the accuracy 

and efficiency of reinforced soil slope stability 

analysis. By integrating multi-objective PSO with 

RF-SVR aims to overcome the limitations of 

traditional methods and provide a comprehensive 

and robust analysis of slope stability. The proposed 

model integrates RF and SVR, leveraging machine 

learning capabilities to capture complex 

relationships and patterns in the data. The model 

employs MOPSOA to optimize the parameters, 

enhancing the accuracy and efficiency of the 

stability predictions. Unlike conventional methods 

that often assume linear relationships, the hybrid 

model can handle non-linear relationships between 

various factors affecting slope stability. The 

proposed model is data-driven, allowing it to adapt 

to diverse soil conditions and failure mechanisms 

without relying on simplifying assumptions. The 

developed model can assist engineers and designers 

in making informed decisions regarding the design 

and reinforcement of slopes, ultimately leading to 

safer and more cost-effective slope structures. The 

developed model improves prediction accuracy by 

capturing the non-linear relationships between input 

variables and slope stability indicators. Finally, it 

allows for optimizing reinforcement parameters to 

enhance slope stability performance. Overall while 

conventional methods have their limitations, the 

proposed hybrid RF-SVR-MOPSOA model 

addresses some of these drawbacks by incorporating 

machine learning and optimization techniques, 

providing a more versatile and accurate approach to 

assessing reinforced soil slope stability. The data-

driven nature and the ability to handle non-linear 

relationships make it a promising tool for enhancing 

slope stability analysis in geotechnical engineering. 

Table 1 provides a list of acronyms. 

The research objectives of this study are as 

follows: 
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Table 1. List of acronyms 

MOPSOA Multi-Objective Particle Swarm 

Optimization Algorithm 

RF Random Forest 

SVR Support Vector Regression 

ENR  Elastic Net Regression  

RR  Ridge Regression  

LR Lasso Regression   

PSO particle swarm optimization 

FEM finite element methods 

GPI Global Performance Indicator 

NS Nash-Sutcliffe efficiency 

LMI  Legate and McCabe’s Index 

VAF Variance Account Factor 

RMSE Root Mean Square Error 

WI Willmott’s Index for agreement 

MAPE Mean Absolute Percentage Error  

PI Performance Index 

RSR Root Sum of Squares of the Residuals 

MBE Mean Bias Error 

NMBE Normalized Mean Bias Error 

RPD  Relative Percentage Difference  

MAE Mean Absolute Error 

RBF Radial Basis Function 

 

 

 
Figure. 1 Layout of the proposed methodology 

 

• To develop a hybrid RF-SVR-MOPSOA 

model for analyzing the stability of 

reinforced soil slope. 

• To predict the safety factor of reinforced 

soil slopes by utilizing the trained hybrid 

RF-SVR-MOPSOA model based on the 

given input data. 

• To assess and contrast the performance of 

the proposed model in comparison to 

alternative regression models such as ENR, 

RR and LR. 

• To assess various performance evaluation 

parameters for comparing and determining 

the most appropriate model. 

• To consider ROC curve performance for the 

most effective and accurate in predicting 

reinforced soil slope stability.  
 

The study is organized into the following 

sections: section 2 describes the process of data 

collection, including the selection of input variables 

and data sources and the methodology of the 

proposed model. Section 3 presents the findings 

obtained from applying the models. Section 4 

summarizes the key findings of the study, highlights 

the limitations of the study and suggests areas for 

future research to improve further and expand the 

modeling approach. 

2. Data collection and methodology 

2.1 Proposed methodology: 

The proposed study aims to assess the reinforced 

soil slope stability using a novel multi-objective 

particle swarm optimized RF-SVR model. The 

methodology involves several steps as follows: Data 

was gathered from previous studies using a method 

called data acquisition from literature, specifically 

focusing on relevant input parameters such as slope 

ratio (1:1 and 2:1), cohesion (C) ranging from 5 to 

30 kPa, friction angle (φ) ranging from 10° to 20°, 

slope angle (45° to 54°), bar inclination (0° to 25°) 

and some reinforced layers (10 to 18). A Hybrid RF-

SVR-MOPSOA model was developed by 

integrating the RF and SVR techniques with the 

MOPSOA. The collected input and output data were 

then utilized to train the model. The trained Hybrid 

RF-SVR-MOPSOA model was used to predict the 

safety factor based on the input data. Additionally, 

the MOPSOA algorithm was employed to optimize 

the predicted output performance.  

The output performance obtained from the 

proposed model was compared with the 

performance achieved through the traditional  
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Table 2. Selected parameters and its ranges 

Input parameters and its 

ranges  

Output 

parameter 

Slope (ratio)  1:1 and 

2:1 

 

 

 

Safety factor Cohesion, C (kPa)  5 to 30 

Friction angle, φ ()  10 to 20 

Slope angle, ()  45 to 54 

Bar inclination,()  0 to 25 

Number of reinforce 

layers  

10 to 18 

 

method. Various performance assessment 

parameters were evaluated, such as global 

performance indicator (GPI), nash-sutcliffe 

efficiency (NS), expanded uncertainty (U95), legate 

and McCabe’s index (LMI), variance account factor 

(VAF), root mean square error (RMSE), Willmott’s 

index for agreement (WI), R2 (determination 

coefficient), t-statistic, Adj. R2 (adjusted coefficient 

of determination), MAPE (mean absolute percentage 

error), bias factor, performance index (PI), RSR 

(root sum of squares of the residuals), mean bias 

error (MBE), normalized mean bias error (NMBE), 

relative percentage difference (RPD), mean absolute 

error (MAE) and reliability index (β).  

The performance assessment parameters were 

utilized to compare and determine the most 

appropriate model. The proposed hybrid RF-SVR-

MOPSOA model performance was evaluated in 

comparison with alternative regression models such 

as the ENR, RR and LR, serving as a statistical 

summary to illustrate the best-suited model for 

reinforced soil slope stability analysis. Fig. 1 

illustrates the layout of the proposed methodology, 

outlining the step-by-step approach to be followed 

throughout the study. 

2.2 Data collection 

The proposed study collected input and output 

data from existing studies. The criteria for selecting 

input and output data from the literature were as 

follows: Data related to slope stability analysis and 

reinforced soil slopes were considered, focusing on 

the specific problem being addressed in the study. 

Data from reputable sources were chosen to ensure 

the accuracy and reliability of the information. The 

selected parameters were chosen based on their 

significance in the analysis of reinforced soil slope 

stability, and their potential impact on the safety 

factor was considered. To capture a comprehensive 

view of the problem, a reasonable range of variation 

for each input parameter was selected. The selected 

input and output data were consistent with the 

objectives of this study and the methodology used to 

develop the proposed multi-objective particle swarm 

optimized RF-SVR model. By adhering to these 

criteria, this study ensured that the input and output 

data collected from the literature were appropriate 

for conducting a robust analysis of reinforced soil 

slope stability. Table 2 presents the selected 

parameters and their respective ranges used in the 

study. Table 3 presents the collected input and 

output data for this study. 

2.3 Proposed models for reinforced soil slope 

stability analysis 

2.3.1. Random forest model 

Random forest, an expansion of decision tree 

framework, constitutes a component of the bagging 

family of algorithms, serving for classification and 

regression tasks. During the training phase, random 

forest constructs multiple decision trees and 

combines their predictions to enhance accuracy and 

robustness in making predictions. To initiate random 

forest, it generates multiple subsets of the training 

data using bootstrap sampling, involving random 

sampling of the training data with replacement. A 

separate decision tree is built for each subset of the 

data, differing slightly from the conventional 

decision tree construction process. In every tree 

node, the random forest algorithm evaluates just a 

random subset of features to divide the data, instead 

of analyzing all the features. The diversity among 

the trees is a result of this randomization. In the 

prediction phase, the new data point is processed 

through each decision tree, and each tree offers its 

prediction. In the case of regression tasks, the final 

prediction is calculated by averaging the predictions 

of all trees. 

The random forest model comprises multiple 

decision trees, each having its unique set of rules, 

making it challenging to represent the entire model 

with a single equation. However, when dealing with 

regression tasks, the prediction for a new data point 

(𝑋𝑛𝑒𝑤) was determined by computing the mean of 

forecasts generated by each individual tree (𝑌𝑝𝑟𝑒𝑑𝑖) 

among the “𝑛” decision trees present in the random 

forest, as shown in Eq. (1). 

 

𝑅𝑎𝑛𝑑𝑜𝑚𝐹𝑜𝑟𝑒𝑠𝑡(𝑋𝑛𝑒𝑤) =
1

𝑛
∑ 𝑌𝑝𝑟𝑒𝑑𝑖
𝑛
𝑖=1    (1) 

2.3.2. Support vector regressions model 

SVR, an algorithm for regression tasks, falls  
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Table 3. Collected input and output data for this study  

References 

 

Input data Output 

data 

Slope 

(ratio) 

Cohesion, C 

(kPa) 

Friction 

angle, φ 

() 

Slope 

angle 

() 

Bar 

inclination () 

Number of 

reinforce 

layers 

Safety 

factor 

Qiu  and Wang 

[25] 

1:1 25 20 0 0 0 1.68 

1:1 20 20 0 0 0 1.46 

1:1 15 20 0 0 0 1.24 

1:1 10 20 0 0 0 1.00 

1:1 30 15 0 0 0 1.73 

1:1 25 15 0 0 0 1.52 

1:1 20 15 0 0 0 1.30 

1:1 15 15 0 0 0 1.09 

1:1 25 10 0 0 0 1.35 

1:1 20 10 0 0 0 1.15 

2:1 20 20 0 0 0 1.96 

2:1 15 20 0 0 0 1.71 

2:1 10 20 0 0 0 1.44 

2:1 5 20 0 0 0 1.15 

2:1 25 15 0 0 0 1.78 

2:1 20 15 0 0 0 1.55 

2:1 15 15 0 0 0 1.31 

2:1 10 15 0 0 0 1.06 

2:1 15 10 0 0 0 1.21 

Sazzad and 

Rahat 

[26] 

0 0 0 45 0 0 1.59 

0 0 0 45 5 0 1.82 

0 0 0 45 10 0 1.76 

0 0 0 45 15 0 1.74 

0 0 0 45 20 0 1.61 

0 0 0 45 25 0 1.47 

0 0 0 49 0 0 1.17 

0 0 0 49 5 0 1.43 

0 0 0 49 10 0 1.72 

0 0 0 49 15 0 1.63 

0 0 0 49 20 0 1.45 

0 0 0 49 25 0 1.11 

0 0 0 54 0 0 1.20 

0 0 0 54 5 0 1.59 

0 0 0 54 10 0 1.73 

0 0 0 54 15 0 1.68 

0 0 0 54 20 0 1.44 

0 0 0 54 25 0 1.17 

0 0 0 0 0 10 1.18 

0 0 0 0 0 11 1.31 

0 0 0 0 0 12 1.44 

0 0 0 0 0 13 1.77 

0 0 0 0 0 14 1.74 

0 0 0 0 0 15 1.68 

0 0 0 0 0 16 1.59 

0 0 0 0 0 17 1.54 

0 0 0 0 0 18 1.46 

 

 

under the category of support vector machines 

(SVM). Its objective is to locate a hyperplane that 

effectively accommodates the data points within a 

defined margin while allowing room for errors 

within a given tolerance (epsilon). By employing 

kernel functions, SVR is adept at capturing intricate 
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connections between features and target variables, 

even those that exhibit non-linear patterns. Through 

the use of kernel functions, SVR maps the initial 

feature space into a higher-dimensional one, with 

typical examples of kernel functions comprising 

linear, polynomial, radial basis function (RBF), and 

sigmoid.  

SVR identifies the optimal hyperplane in the 

transformed space by minimizing errors and 

defining it through a weight vector (w) and bias 

term (b). The SVR method excludes data points 

within a certain margin from being treated as errors, 

resulting in their loss function contribution being 

zero. SVR endeavors to minimize errors beyond the 

margin and those surpassing epsilon by 

incorporating them into the loss function. The 

objective of SVR is to determine the regression 

function𝑓(𝑋𝑖) that minimizes the loss function while 

adhering to the constraints set by the margin and 

epsilon. The fundamental expression for the SVR 

model can be stated as following Eqs. (2)-(5): 

 

𝐺𝑖𝑣𝑒𝑛𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑑𝑎𝑡𝑎: (𝑋_𝑖, 𝑦_𝑖)𝑓𝑜𝑟𝑖 = 1,2, . . . 𝑛  (2) 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒:
1

2
||𝑤||

2
+ 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗)𝑛
𝑖=1  (3) 

 

Subject to: 

 

𝑦𝑖 − 𝑓(𝑋𝑖) ≤ 𝜀 + 𝜉𝑖                          (4) 

 

𝑓(𝑋𝑖) − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖
∗               (5) 

 

Where, 𝑓(𝑋𝑖) is the predicted value for the data 

point𝑋𝑖, 𝜀 is the margin or tube width, 𝜉𝑖 and 𝜉𝑖
∗are 

variables that represent the prediction error, 𝐶is the 

regularization parameter that balances the trade-off 

between maximizing margin and minimizing errors. 

2.3.3. Multi-objective particle swarm optimization 

algorithm 

Multi-objective particle swarm optimization 

(MOPSO) is a distinctive variant of the particle 

swarm optimization (PSO) algorithm that is tailored 

for addressing multiple objectives simultaneously 

created specifically for tackling multi-objective 

optimization problems. MOPSO consists of several 

essential elements: particle representation, objective 

functions, pareto dominance, personal best (pBest) 

and global best (gBest).  

The MOPSO algorithm employs particles to 

represent potential solutions to the multi-objective 

problem. Each particle is represented as a vector of 

decision variables. The objective functions assess 

the fitness of each particle on the basis of its 

performance concerning each objective. Pareto 

dominance is a way to figure out if one solution, “A” 

is better than another solution “B”. A solution that is 

not dominated by any other solution is deemed 

Pareto-optimal. Every particle maintains its personal 

best position by considering its historical best 

performance during optimization. The best solution 

found among all the particles in the entire group is 

known as the global best position. The MOPSO 

algorithm can be summarized as follows steps: 

Step 1: Initialization 

Begin by setting up the particle population with 

randomly assigned positions and velocities. Set 

pBest and gBest for each particle. 

Step 2: Fitness evaluation 

Evaluate the fitness of each particle by 

computing its objective function values. 

Step 3: Pareto domination 

Identify the non-dominated solutions in the 

current population to form the pareto-optimal front. 

Step 4: Update pBest and gBest 

Update the personal best and global best 

positions based on the current pareto-optimal front. 

Step 5: Velocity update 

Update each particle’s velocity to move towards 

pBest and gBest positions. 

Step 6: Position update 

Adjust the particle's position according to the 

updated velocity. 

Step 7: Termination criterion 

Iterate through steps 2 to 6 until the termination 

condition is satisfied, such as reaching the maximum 

iteration limit. Eqs. (6) and (7) expressed the particle 

position update and velocity update in the MOPSO 

algorithm.  

 

𝑁𝑒𝑤𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 =  

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 + 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦     (6) 

 

𝑁𝑒𝑤𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = 𝜔 × 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 +  

𝑐1 × 𝑟𝑎𝑛𝑑𝑜𝑚() × (𝑝𝐵𝑒𝑠𝑡𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 −  

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) + 𝑐2 × 𝑟𝑎𝑛𝑑𝑜𝑚() ×  

(𝑔𝐵𝑒𝑠𝑡𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛)    (7) 

 

Where, 𝜔 is inertial weight, 𝑐1 and 𝑐2 are the 

acceleration constants 𝑟𝑎𝑛𝑑𝑜𝑚() is a random 

number ranging from 0 to 1, respectively. 

Let 𝑋 and 𝑌be two particles, 𝑋dominates 𝑌  as 

expressed in Eq. (8); 

 

∀𝑖: 𝑓𝑖(𝑋) ≤ 𝑓𝑖(𝑌) ∧ ∃𝑗: 𝑓𝑗(𝑋)⟨𝑓𝑗(𝑌)   (8) 

 

Where, 𝑓𝑖(𝑋)  and 𝑓𝑖(𝑌)  are the objective 

function values of 𝑋 and 𝑌 for the i-th objective, 
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respectively. The current particle’s fitness was 

assessed in relation to its highest individual fitness 

achievement. Should the current level of fitness be 

greater, proceed to modify the pBest position and 

fitness accordingly. The non-dominated solutions 

within the current population were identified to 

create the pareto-optimal front. Select the best 

solution from this front to establish the new gBest 

position. 

2.3.4. Hybrid RF-SVR-MOPSOA model 

The hybrid RF-SVR-MOPSOA model is a 

combination of the random forest (RF), support 

vector regression (SVR), and multi-objective 

particle swarm optimization algorithm (MOPSOA) 

to analyze the reinforced soil slope stability. The 

hybrid RF-SVR-MOPSOA model offers a powerful 

and innovative approach for analyzing reinforced 

soil slope stability, combining the strengths of 

multiple techniques to provide accurate, robust, and 

efficient solutions, thereby assisting in enhancing 

the safety and cost-effectiveness of slope 

stabilization projects.  

The combination of RF and SVR allows the 

model to exploit the strengths of both techniques. 

By combining these methods, the model can achieve 

higher accuracy in predicting slope stability. The 

hybrid model benefits from the robustness of 

ensemble learning provided by random forest; also 

leads to improved generalization and reduced risk of 

overfitting. Incorporating the MOPSOA enables the 

model to consider multiple objectives 

simultaneously, such as maximizing slope stability 

while minimizing material usage or construction 

cost. The hybrid approach aims to overcome 

limitations and weaknesses present in individual 

models. The hybrid RF-SVR-MOPSOA model is 

designed to predict the safety factor of a reinforced 

soil slope based on various input parameters. The 

safety factor is a critical measure in geotechnical 

engineering that represents the steadiness of a slope; 

an increased safety factor suggests a slope with 

greater stability. 

The input data and output data for the model 

include the following parameters; slope ratio, 

cohesion, friction angle, slope angle, bar inclination 

and number of reinforced layers and safety factor. 

The slope ratio represents the ratio of the vertical 

rise to the horizontal run of the slope. Cohesion is a 

measure of the soil’s internal strength. The friction 

angle represents the angle of internal friction 

between soil particles. The slope angle is determined 

as the angle between a horizontal plane at a specific 

point on the land’s surface. Bar inclination is the 

inclination angle of the reinforcement bars used in 

the slope. The model aims to predict the safety 

factor of the reinforced soil slope. The safety factor 

is a dimensionless value that quantifies the stability 

of the slope. A safety factor above 1 signifies a 

secure slope, whereas a safety factor below 1 

indicates an insecure slope. 

2.3.4.1. Model training and optimization 

The training and optimization process of the 

hybrid RF-SVR-MOPSOA model for reinforced soil 

slope stability analysis involves the following steps: 

Data pre-processing: The first step is to collect 

and pre-process the data related to the reinforced 

soil slopes. This data should include factors 

influencing slope stability, such as soil properties, 

reinforcement characteristics, and external loading 

conditions. This study collected slope ratio, 

cohesion, friction angle, slope angle, bar inclination, 

and the number of reinforced layers and safety 

factors. Clean the data by handling any missing 

values, outliers, or noise that may affect the model’s 

performance. The dataset was divided into input 

features (independent variables) and the 

corresponding slope stability values (dependent 

variable). 

Data splitting: Before training the model, the 

data is split into two groups: one for training and the 

other for testing purposes. The training set was 

utilized for constructing the model, while its 

performance and capability were assessed through 

the testing set. This investigation partitioned the data, 

allocating 70% for the training set and 30% for the 

testing set. 

Random forest (RF) training: Start training the 

random forest model using the training set. 

Support vector regression (SVR) training: After 

training the RF model, proceed with training the 

SVR model using the same training set. 

Hybrid model integration: The RF and SVR 

models were combined to create the Hybrid RF-

SVR model. This was done using the weighted 

average of their predictions or feeding their outputs 

as input to another model. 

Multi-objective particle swarm optimization 

algorithm (MOPSOA): The multi-objective particle 

swarm optimization algorithm was implemented to 

optimize the hybrid RF-SVR model. The position of 

the particles representing the best solutions from the 

MOPSOA was used to get the corresponding 

weights for combining the predictions from the RF 

and SVR models. The final prediction of the safety 

factor was determined through the utilization of 

weighted combination of the RF and SVR model 
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outputs. 

Evaluation and validation: Once the hybrid RF-

SVR-MOPSOA model is trained and optimized, the 

testing set is utilized to assess its performance. 

Various evaluation metrics were calculated to assess 

how well the model predicts the slope stability 

values on unseen data. The parameters and 

hyperparameters of the individual algorithms were 

fine-tuned and achieved optimal performance by 

MOPSOA. 

Testing and deployment: Once the model is 

validated and tuned, which is used to predict the 

safety factors (𝐹) of reinforced soil slopes using Eq. 

(9). 

 

𝐹𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 =
𝐹𝑎𝑐𝑡𝑢𝑎𝑙−𝐹𝑚𝑖𝑛

𝐹𝑚𝑖𝑛𝑚𝑎𝑥
  (9) 

2.3.5. Model evaluation 

A wide array of statistical parameters supports 

the model’s fitness and sufficiency. These 

parameters include NS, GPI, LMI, U95, RMSE, VAF, 

R2, WI, t-statistic, MAPE, Adj. R2, PI, Bias Factor, 

RSR, NMBE, MBE, MAE, RPD and β [27]. These 

statistical parameters collectively provide a 

comprehensive evaluation of the hybrid RF-SVR-

MOPSOA model’s performance and suitability for 

reinforced soil slope stability analysis. Eqs. (10) to 

(28) were utilized for the computation of the above 

mentioned statistical parameters. Table 4 shows the 

notation list that explains the meaning of functions 

and variables used in these mathematical formulas. 

2.3.5.1. Global performance indicator (GPI): 

GPI is a comprehensive metric that combines 

multiple performance indicators to provide an 

overall assessment of a model. GPI is a single value 

that evaluates how accurate a model is by looking at 

multiple factors. A higher GPI means the model is 

more accurate. 
 

Table 4. Notation list 

𝑛 Total number of data points 

𝑁 Total number of data points 

𝑖 Index for actual and predicted 

values 

𝑑𝑖 𝑖th actual value 

𝑦𝑖  𝑖th predicted value 

𝑝 Number of predicting variables 

𝑑𝑚𝑒𝑎𝑛 Mean of actual values 

𝑆𝐷 Standard deviation of actual 

values 

𝜇𝐹 Safety factor mean value 

𝜎𝐹 Safety factor standard deviation 

value 

 

𝐺𝑃𝐼 = 𝑀𝐵𝐸 × 𝑅𝑀𝑆𝐸 × 𝑈95 × 𝑡𝑠𝑡𝑎𝑡 × (1 − 𝑅2) 
(10)      

2.3.5.2. Nash-sutcliffe efficiency (NS): 

NS is a statistical measure commonly used to 

assess the accuracy of model predictions. It 

compares the simulated values to the observed 

values, providing a single metric for model 

performance with values ranging from negative 

(poor fit) to 1 (perfect fit). A higher NS, close to 1, 

means the model and the data match well. 

 

𝑁𝑆 = 1 −
∑ (𝑑𝑖−𝑦𝑖)

2𝑛
𝑖=1

∑ (𝑑𝑖−𝑑𝑚𝑒𝑎𝑛)
2𝑛

𝑖=1

        (11) 

2.3.5.3. Expanded uncertainty (U95): 

𝑈95  shows how good a model is at short-term 

predictions, with a 95% confidence interval. It 

accounts for various sources of uncertainty, 

providing a more realistic and conservative estimate 

of measurement reliability.  

 

𝑈95 = 1.96 × (𝑆𝐷2 + 𝑅𝑀𝑆𝐸2)1 2⁄         (12) 

2.3.5.4. Legate and McCabe’s index (LMI): 

LMI is a hydrological metric used to evaluate 

the accuracy of simulations. It considers both the 

timing and magnitude of simulated and observed 

values, providing a comprehensive assessment of 

model performance. LMI measures the difference 

between a model's predictions. A lower LMI value 

indicates a better performance of the model. 

 

𝐿𝑀𝐼 = 1 − [
∑ |𝑑𝑖−𝑦𝑖|
𝑁
𝑖=1

∑ |𝑑𝑖−𝑑𝑚𝑒𝑎𝑛|
𝑁
𝑖=1

]              (13) 

2.3.5.5. Variance account factor (VAF): 

VAF is a metric used to assess the effectiveness 

of the model. It compares the variance of the 

estimated effort to the total variance, offering 

insights into the accuracy of model. VAF shows 

how well a model is performing, with a value closer 

to 100% indicating better performance.  

 

𝑉𝐴𝐹 = [1 −
𝑣𝑎𝑟(𝑑𝑖−𝑦𝑖)

𝑣𝑎𝑟(𝑑𝑖)
] × 100            (14) 

2.3.5.6. Root mean square error (RMSE): 

RMSE widely used in various fields, such as 

statistics and geosciences, providing a measure of 

the model's predictive accuracy. RMSE calculates 

the average difference between predicted and actual 
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values. Lower RMSE values mean better model 

performance. 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑑𝑖 − 𝑦𝑖)

2𝑛
𝑖=1            (15) 

2.3.5.7. Willmott’s index for agreement (WI): 

WI assesses the agreement between observed 

and simulated data, considering both the systematic 

and random errors. WI estimates prediction errors in 

a model, with 1 meaning perfect agreement, 0 

meaning no agreement, and -1 meaning total 

disagreement.  

 

𝑊𝐼 = 1 − [
∑ (𝑑𝑖−𝑦𝑖)

2𝑁
𝑖=1

∑ (|𝑦𝑖−𝑑𝑚𝑒𝑎𝑛|+|𝑑𝑖−𝑑𝑚𝑒𝑎𝑛|)
2𝑁

𝑖=1
]       (16) 

2.3.5.8. Determination coefficient (R2): 

The R2 represents the proportion of the variance 

in the dependent variable that is predictable from the 

independent variable(s). R2 shows how well the 

predicted data aligns with the regression line. It 

ranges from 0 to 1, with higher values indicating a 

better fit of the model to the data. 

 

𝑅2 =
∑ (𝑑𝑖−𝑑𝑚𝑒𝑎𝑛)

2𝑛
𝑖=1 −∑ (𝑑𝑖−𝑦𝑖)

2𝑛
𝑖=1

∑ (𝑑𝑖−𝑑𝑚𝑒𝑎𝑛)
2𝑛

𝑖=1

       (17) 

2.3.5.9. T-statistic: 

The t-statistic assesses the significance of the 

difference between the sample mean and the 

hypothesized population mean. It is widely used in 

hypothesis testing to determine whether an observed 

effect is statistically significant. Lower t-statistic 

values indicating better predictive capability. 

 

t-statistic = √
(𝑁−1)𝑀𝐵𝐸2

𝑅𝑀𝑆𝐸2−𝑀𝐵𝐸2
                        (18) 

2.3.5.10. Adjusted coefficient of determination (Adj. R2): 

The adjusted R2 considers the number of 

predictors in a model, providing a more accurate 

representation of the model’s goodness of fit. It 

evaluates the suitability of a regression model’s fit, 

adjusting for the number of predictors.  

 

𝐴𝑑𝑗. 𝑅2 = 1 −
(𝑛−1)

(𝑛−𝑝−1)
(1 − 𝑅2)            (19) 

2.3.5.11. Mean absolute percentage error (MAPE): 

MAPE measures the accuracy of a forecasting 

method by calculating the percentage difference 

between predicted and observed values. It provides a 

clear indication of the average magnitude of errors 

in percentage terms. 

 

 𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

𝑑𝑖−𝑦𝑖

𝑑𝑖
|𝑛

𝑖=1   (20) 

2.3.5.12. Bias factor: 

Bias factor quantifies the systematic error in a 

model. Bias Factor measures the variance between 

average predicted and observed values. It helps 

identify whether the model tends to consistently 

overestimate or underestimate the true values. A 

value close to zero means unbiased predictions.  

 

𝐵𝑖𝑎𝑠𝑓𝑎𝑐𝑡𝑜𝑟 =
1

𝑁
∑

𝑦𝑖

𝑑𝑖

𝑛
𝑖=1   (21) 

2.3.5.13. Performance index (PI): 

PI is commonly used to assess schedule 

performance. It calculates the accuracy of the model 

predictions around the observed values. A smaller 

value of PI indicates that the model predictions are 

accurate. 

 

𝑃𝐼 = 𝐴𝑑𝑗. 𝑅2 − 𝑅𝑀𝑆𝐸 + 0.01𝑉𝐴𝐹          (22) 

2.3.5.14 Root Sum of Squares of the Residuals 

(RSR): 

RSR is a hydrological metric used to evaluate 

the goodness of fit in simulations. It considers the 

squared differences between simulated and observed 

values, providing a measure of model accuracy. 

RSR's lower values indicate improved model 

performance.  

 

𝑅𝑆𝑅 =
𝑅𝑀𝑆𝐸

√
1

𝑁
∑ (𝑑𝑖−𝑑𝑚𝑒𝑎𝑛)

2𝑛
𝑖=1

      (23) 

2.3.5.15. Mean bias error (MBE): 

MBE quantifies the average difference between 

predicted and observed values, indicating the overall 

bias in a model. Positive values suggest 

overestimation, while negative values indicate 

underestimation.  

 

𝑀𝐴𝐸 =
1

𝑁
∑ (𝑦𝑖 − 𝑑𝑖)
𝑛
𝑖=1       (24) 

2.3.5.16. Normalized mean bias error (NMBE): 

NMBE is a normalized version of MBE, 

expressed as a percentage of the observed mean. It 

provides a standardized measure of bias, allowing 

for comparisons between different datasets or 
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models. NMBE compares MBE results by adjusting 

them, considering the average of measured values. 

 

𝑁𝑀𝐵𝐸(%) =
1

𝑁
∑ (𝑦𝑖−𝑑𝑖)
𝑛
𝑖=1

1

𝑁
∑ (𝑑𝑖)
𝑛
𝑖=1

× 100          (25)  

2.3.5.17. Relative percentage difference (RPD): 

RPD is a metric used to assess the agreement 

between two sets of values, considering both 

magnitude and direction. RPD shows the 

relationship between observed values' standard 

deviation and the model's RMSE. 

 

𝑅𝑃𝐷 =
𝑆𝐷

𝑅𝑀𝑆𝐸
        (26) 

2.3.5.18. Mean absolute error (MAE): 

MAE quantifies the average absolute difference 

between predicted and observed values. It provides a 

straightforward measure of accuracy, with lower 

values indicating better model performance.  

 

𝑀𝐴𝐸 =
1

𝑁
∑ |(𝑦𝑖 − 𝑑𝑖)|
𝑛
𝑖=1             (27) 

2.3.5.19. Reliability index (β): 

The reliability index is commonly used in 

geotechnical engineering to assess the safety of 

structures or slopes. It is calculated based on the 

ratio of the available strength to the applied loads, 

providing a safety margin. It indicates the smallest 

separation between the origin in the reduced 

variable space and the surface representing failure, 

with higher values indicating better reliability.  

 

𝛽 =
𝜇𝐹−1

𝜎𝐹
    (28) 

3. Result and discussion 

3.1 Safety factor prediction 

Fig. 2 shows the predicted safety factors for the 

proposed hybrid RF-SVR-MOPSOA model and 

three other regression models: Elastic net regression 

(ENR), ridge regression (RR), and lasso regression 

(LR). The analysis was conducted using the 

MATLAB programming language. The predicted 

safety factors by the proposed model are very close 

to the actual safety factors. This suggests that the 

proposed model is an excellent fit for the data and 

can capture the underlying patterns effectively. The 

predicted safety factors by ENR are reasonably 

close to the actual values. However, compared to the 

proposed model, it exhibits a lower level of  
 

 
Figure. 2 Performances of predicted safety factor 

 

accuracy. Both RR and LR indicate a lesser ability 

to predict the variability in the data compared to 

ENR. As a result, the predicted safety factors by 

these models deviate from the actual values 

compared to the proposed and ENR models. 

The proposed model combines the strengths of 

the RF-SVR model and MOPSOA optimization, 

allowing it to handle both linear and non-linear 

relationships in the data. This adaptability enables 

the model to make accurate predictions of safety 

factors, leading to minimal deviations between the 

predicted and actual values. In contrast, the other 

regression models (ENR, RR, and LR) have 

limitations in handling non-linearity. They may 

suffer underfitting or overfitting issues, leading to 

larger deviations between the predicted and actual 

safety factors. Overall, the proposed hybrid RF-

SVR-MOPSOA model demonstrates superior 

performance in predicting safety factors compared 

to traditional regression models such as ENR, RR, 

and LR. It achieves almost perfect accuracy, 

indicating its effectiveness in predicting the data. 

This suggests that the proposed model could be a 

promising approach for predicting safety factors in 

the reinforced soil slope stability. 

Additionally, Figs. 3-6 demonstrate the R2 

(coefficient of determination) values for the training 

and testing datasets, which indicate the goodness-of-

fit of each model. The R2 values for the training 

dataset indicate how well each model fits the 

training data. A value of 1 indicates a perfect fit, 

while values closer to 0 indicate a poorer fit. The 

proposed Hybrid RF-SVR-MOPSOA model has an 

exceptionally high R2 value of 0.9995, suggesting an 

excellent fit to the training data. It outperforms the 

other models significantly in this aspect. ENR also 

shows a reasonably high R2 value of 0.9872, 

indicating a good fit, while RR and LR have lower 

R2 values, suggesting weaker fits to the training data.  

The R2 values for the testing dataset are slightly  
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Figure. 3 Regression plots for proposed model 

 

 
Figure. 4 Regression plots for elastic net regression 

model 

 

 
Figure. 5 Regression plots for ridge regression model 

 

 
Figure. 6 Regression plots for the lasso regression model 

 

lower than the training R2 values for all models, 

which is expected. The proposed model maintains a 

high R2 value of 0.9991, indicating strong 

generalization to new data. ENR demonstrates good 

generalization with an R2 value of 0.9840, while RR 

and LR also show acceptable generalization but with 

a lower R2 value of 0.8120 0.8701 compared to the 

proposed model and ENR. Based on the R2 values, 

the proposed hybrid RF-SVR-MOPSOA model 

significantly outperforms all the other regression 

models in training and testing data. It achieves near-

perfect accuracy, with R2 values close to 1 for 

training and testing datasets. The proposed model 

combines multiple techniques (RF and SVR with the 

MOPSO algorithm) to create a hybrid model that is 

more powerful in capturing complex relationships in 

the data, which leads to achieving a near-perfect fit 

and accurately predicting the safety factors. On the 

other hand, the other regression models (ENR, RR, 

and LR) show progressively lower R2 values, 

indicating a lower ability to explain the variance in 

the data because these regression models use single 

algorithms and are less effective at capturing 

complex patterns present in the data, resulting in 

lower R2 values. 

3.2 Performance metrics 

Table 5 provides a thorough evaluation of 

performance metrics, drawing a comparison 

between the newly introduced Hybrid RF-SVR-

MOPSOA model and several traditional regression 

models, including ENR, RR, and LR, for predicting 

safety factors. The evaluation metrics utilized in the 

comparison offer valuable comprehensions into the 

effectiveness of each model and make precise 

predictions. Additionally, the metrics employed to 

evaluate the performance of the models encompass 

various statistical indicators commonly employed in 

regression analysis. The proposed hybrid model 

shows promising performance across various 

metrics. It outperforms all traditional regression 

models in terms of most of the evaluation metrics, 

including GPI, NS, U95, LMI, VAF, RMSE, WI, R2, 

t-statistic, Adj. R2, MAPE, Bias Factor, PI, RSR, 

MBE, NMBE, RPD, MAE, and β. These results 

indicate that the hybrid model is superior and has 

more accurate prediction performances than others. 

The traditional regression models also demonstrate 

acceptable performance but generally fall short 

compared to the proposed hybrid model. The 

proposed model achieves an impressive VAF of 

99.98%, indicating high accuracy. This high 

accuracy is further supported by the low RMSE, 

which indicates small prediction errors. The 

proposed model has the lowest t-statistic value 

(0.1523), suggesting that its coefficients are 

statistically significant compared to the traditional 

regression models.  
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Table 5. Performance comparison of the proposed hybrid 

RF-SVR-MOPSOA model and traditional regression 

models for safety factor prediction 

Evaluati

on 

metrics  

Propose

d model 

(Hybrid 

RF-

SVR-

MOPSO

A)  

Elastic 

Net 

Regressi

on 

Ridge 

Regressi

on 

Lasso 

Regressi

on 

GPI                    1.53 1.50 1.48 1.47 

NS                   0.9956 0.9653 0.8451 0.8249 

U95 0.00453 0.0654 0.0754 0.0755 

LMI                    0.9851 0.9752 0.9625 0.9425 

VAF                   99.98% 95.85% 92.72% 90.98% 

RMSE                   0.0031 0.057 0.0184 0.0256 

WI                     0.9997 0.9754 0.9121 0.8942 

R2                    0.9995 0.9872 0.8746 0.8143 

t-statistic         0.1523 0.4265 0.4523 0.5124 

Adj. R2             0.9998 0.9974 0.8142 0.8003 

MAPE                   0.0038 0.0375 0.0452 0.0478 

Bias 

Factor            

0.99984 0.9821 0.9725 0.9642 

PI  1.9975 1.5246 1.2541 1.0025 

RSR                    0.00214 0.0142 0.0158 0.0163 

MBE                    0.00147 0.0125 0.0142 0.0168 

NMBE                   0.00135 0.0254 0.0275 0.0298 

RPD                    2.857 2.694 2.634 2.599 

MAE    0.00129 0.0152 0.0254 0.0325 

β  1.0084 1.0052 1.0026 0.9852 

 

 

 
Figure. 7 ROC curve plot for proposed with traditional 

models 

 

The proposed model exhibits a low RSR, MBE, 

NMBE, and MAE, which indicates that it is less 

sensitive to outliers and performs well in predicting 

safety factors than other models. The RPD value for 

the proposed model is significantly higher than the 

traditional regression models, indicating better 

generalization capabilities and less over fitting. The 

β value represents the slope of the regression line. 

The proposed model has a β value close to 1, 

indicating that it provides an accurate linear fit to 

the data. These findings further suggest that the 

hybrid model is a promising approach for safety 

factor prediction.  

Fig. 7 displays the ROC curve plot for the 

proposed model (Hybrid RF-SVR-MOPSOA), ENR, 

RR, and LR. The ROC curve analysis suggests that 

the suggested model surpasses the other regression 

models when considering the balance between 

sensitivity and specificity. This suggests that the 

proposed model is a more promising approach for 

predicting the safety factor than elastic ENR, RR, 

and LR.  

3.2 Comparative analysis of slope stability 

evaluation studies 

Table 6 shows the comparison of proposed and 

existing studies on slope stability. The proposed 

study employs a hybrid model (RF-SVR-MOPSOA) 

on reinforced soil slope data, demonstrating superior 

accuracy in comparison to traditional regression 

models. Notably, it exhibits exceptional adaptability 

to both linear and non-linear relationships, achieving 

an outstanding R2 value of 0.9995 on training data. 

It achieves exceptional accuracy metrics, confirmed 

by ROC curve analysis, making it promising for 

slope stability prediction. 

GA-ANFIS, RFC, and GMDH techniques were 

applied to shear strength parameters. The GA-

ANFIS model outperformed RFC and GMDH, 

exhibiting high accuracy metrics such as NS, VAF, 

RMSE, bias factor, R2, PI, GPI, -stat, U95, tand β. 

This study highlights GA-ANFIS as a reliable soft 

computing technique for slope stability analysis [27]. 

Extreme learning machine (ELM) was utilized on 

worldwide slope cases, demonstrating its advantages 

over GRNN and genetic algorithm models. The 

ELM model exhibited good predictability for slope 

stability analysis, along with lower mean absolute 

percentage errors compared to other models [28]. A 

multi-layer perceptron neural network (MLPNN) 

optimized by evolutionary optimization (EO) and 

variable screening algorithm (VSA) was applied to 

finite element simulation data. The hybrid models 

showed improved performance, with lower training 

and testing RMSE. EO outperformed VSA in 

optimizing MLPNN [29]. An artificial neural 

network (ANN) was employed on numerical 

analysis data, showcasing the strong potential of 

ANN for predicting slope stability. The model's 

performance was evaluated using R2 and RMSE 

metrics [30]. An extreme learning neural network 

was applied to finite element upper and lower bound 
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limit analysis, generating stability charts. The ANN-

based tool provides a quick first assessment of three-

layered soil slope stability, maintaining good 

accuracy and convenience [31]. Existing studies 

employ various techniques, each showcasing 

reliability in slope stability analysis. The proposed 

study's novelty lies in the integration of RF, SVR, 

and MOPSOA, providing superior accuracy and 

adaptability. 

4. Conclusions and future scope 

The proposed study aims to evaluate the 

reinforced soil slopes stability using a novel multi-

objective particle swarm optimized RF-SVR model. 

The following are the summary of this study: 

 

• The proposed hybrid RF-SVR-MOPSOA model 

demonstrates superior accuracy in predicting 

safety factors compared to traditional regression 

models (ENR, RR, and LR). 

• ENR shows reasonably close predictions to 

actual values but exhibits lower accuracy than 

the proposed model, while both RR and LR 

display lesser ability to predict variability, 

resulting in larger deviations. 

• The hybrid RF-SVR-MOPSOA model combines 

the strengths of RF-SVR and MOPSOA 

optimization, enabling it to handle both linear 

and non-linear relationships effectively. 

• This adaptability leads to almost perfect 

accuracy, minimal deviations between predicted 

and actual values, and suggests the proposed 

model's potential as a promising approach for 

predicting safety factors in reinforced soil slope 

stability. 

• The proposed hybrid RF-SVR-MOPSOA model 

exhibits an exceptional R2 value of 0.9995 on 

the training dataset, indicating an outstanding fit 

and outperforming other models significantly. 

ENR also shows a reasonably high R2 value of 

0.9872, suggesting a good fit, while RR and LR 

have lower R2 values, indicating weaker fits to 

the training data. 

• Key metrics, such as GPI, NS, U95, LMI, VAF, 

RMSE, WI, R2, t-statistic, Adj. R2, MAPE, bias 

factor, PI, RSR, MBE, NMBE, RPD, MAE, and 

β, consistently show that the hybrid model 

outperforms, indicating more accurate and 

reliable predictions for safety factors. 

• The proposed hybrid model achieves an 

impressive VAF of 99.98%, highlighting its 

high accuracy in predicting safety factors. 

• The model's low RMSE and the lowest t-statistic 

value (0.1523) signify small prediction errors 

and statistically significant coefficients, 

respectively. 

• The hybrid model exhibits low values for RSR, 

MBE, NMBE, and MAE, indicating robustness 

against outliers and superior predictive 

performance compared to traditional regression 

models. 

• The higher RPD value for the hybrid model 

suggests better generalization capabilities and 

less overfitting, while the β value close to 1 

indicates an accurate linear fit to the data, 

reinforcing the model's promise for safety factor 

prediction. 

• The ROC curve analysis also confirms the 

superiority of the proposed model over the 

traditional regression models in terms of 

sensitivity and specificity trade-offs. Based on 

the findings, it can be concluded that the 

proposed hybrid RF-SVR-MOPSOA model is a 

highly effective and accurate approach for 

predicting safety factors in reinforced soil slope 

stability. 

• Based on the findings, this study makes a 

substantial scientific contribution by introducing 

a novel hybrid RF-SVR-MOPSOA model that 

not only outperforms traditional regression 

models but also demonstrates adaptability, 

robustness, and potential for further 

improvements in predicting safety factors in 

reinforced soil slope stability. 

• Engineers and researchers can influence the 

Hybrid RF-SVR-MOPSOA model to make 

more reliable predictions, contributing to 

improved slope design and risk assessment in 

civil engineering projects. 

 

The results of this study suggest multiple 

possible avenues for further research: Investigating 

the importance of different features and employing 

advanced feature engineering techniques could 

improve the model’s performance and 

interpretability. Exploring the combination of 

multiple predictive models through ensemble 

techniques could lead to even better predictive 

performance. 
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