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Abstract: Many recent swarm-based metaheuristics are trapped in the exploitation of the highest quality as the main 

or the only reference and the neighbourhood search with the reduction of local search space during the iteration. 

Regarding to this issue, this paper introduces a novel metaheuristic called swarm space hopping algorithm (SSHA). 

SSHA consists of three searches. First, a directed search toward the highest quality is performed. Second, the directed 

search toward the resultant of better agents or away from the other agent is performed. Third, the arithmetic crossover 

between the agent and a randomized solution in the first half or second half of space is performed. In this work, three 

evaluations are performed to assess the performance of SSHA. The first evaluation is the benchmark evaluation to 

compare the performance of SSHA with other recent metaheuristics: northern goshawk optimization (NGO), zebra 

optimization algorithm (ZOA), clouded leopard optimization (CLO), osprey optimization algorithm (OOA), and total 

interaction algorithm (TIA). The result exhibits that SSHA is better than NGO, ZOA, CLO, OOA, and TIA in 21, 20, 

17, 17, and 21 functions. In the second evaluation, the individual search evaluation to compare the contribution 

between the first and second searches is performed, with the result that the second search outperforms the first search. 

The third evaluation is performed to assess the contribution of the third search in the optimization process, and the 

result shows that the contribution of the third search is significant only in three functions. 

Keywords: Optimization, Stochastic, Metaheuristic, Highest quality, Neighbourhood search. 

 

 

1. Introduction 

Optimization is an effort to find the highest 

quality solution among a certain number of available 

solutions. This highest quality result is measured by 

an objective function, whether it is maximization or 

minimization. In the context of maximization, the 

highest quality solution is one that produces the 

highest score, such as profit, power, accuracy, and so 

on. On the other hand, in the minimization context, 

the highest quality solution is a solution that produces 

the lowest score, such as cost, loss, and so on. 

In optimization studies, metaheuristic is a popular 

method that has been utilized in many sectors, 

especially engineering. Pelican optimization 

algorithm (POA) has been utilized in the machine 

learning-based face emotion recognition with the 

accuracy is 99% for various emotions [1]. Artificial 

bee colony (ABC) has been hybridized with Jaya 

algorithm to optimize the synthesis of linear antenna 

array with the optimized parameters are position, 

phase, and amplitude [2]. Giant trevally optimizer 

(GTO) has been introduced and utilized to find the 

highest quality position and size of the capacitor 

banks in the low voltage electrical distribution system 

with the objectives are minimizing operational cost 

and energy loss [3]. The elephant herd optimization 

(EHO) has been combined with graph similarity to 

classify the email [4]. The dandelion optimization 

algorithm (DOA) has been combined with deep 

learning to recognize and grade diabetic disease 

through fundus images [5]. 

In recent years, there have been plenty of new 

metaheuristics developed using swarm intelligence 

approach. Most of them utilized the behavior of 

animals as fundamental concept and metaphors due 

to the similarity of swarm intelligence and the animal 

behavior during searching for food or mating. Some 
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of these animal inspired swarm-based metaheuristics 

are northern goshawk optimization (NGO) [6], zebra 

optimization algorithm (ZOA) [7], clouded leopard 

optimization (CLO) [8], coati optimization algorithm 

(COA) [9], Tasmanian devil optimization (TDO) [10], 

pelican optimization algorithm (POA) [11], fennec 

fox optimization (FFO) [12], cheetah optimization 

(CO) [13], walrus optimization algorithm (WaOA) 

[14], white shark optimization (WSO) [15], green 

anaconda algorithm (GAO) [16], red fox 

optimization (RFO) [17], golden jackal optimization 

(GJO) [18], and so on. Besides animal behavior, 

several metaheuristics imitate the social behavior, 

such as migration algorithm (MA) [19], mother 

optimization algorithm (MOA) [20], chef-based 

optimization algorithm (CBOA) [21], driving 

training-based optimization (DTBO) [22], sewing 

training-based optimization (STBO) [23], election-

based optimization algorithm (EBOA) [24], and so 

on. Some swarm-based metaheuristics are free from 

metaphors, such as total interaction algorithm (TIA) 

[25], average and subtraction-based optimization 

(ASBO) [26], attack leave optimization (ALO) [27], 

four-directed search algorithm (FDSA) [28], golden 

search optimization (GSO) [29], and so on. Some 

metaphors promoted the references used in their 

directed search for their name, such as mixed leader-

based optimization (MLBO) [30], hybrid leader-

based optimization (HLBO) [31], multi leader 

optimization (MLO) [32], three influential members-

based optimizations (TIMBO) [33], and so on. 

Despite the massive development of swarm-

based metaheuristics, there is dependence of these 

metaheuristics to the highest quality solution or 

highest quality agent. Many of them utilize the 

highest quality agent as one of their references in 

their directed search, such as in ASBO [26], COA [9], 

ZOA [7], GAO [16], GSO [29], and so on. Although 

the exploitation of the highest quality agent is 

acceptable, there should be an effort to introduce an 

alternative reference and a performance comparison 

between the highest quality and the alternatives. 

Unfortunately, many studies proposing new 

metaheuristic with some alternatives despite the 

highest quality agent, have not measured the 

performance of the alternative. In these studies, the 

performance measurement is conducted for the whole 

metaheuristic. It makes the performance of the 

alternatives has not been investigated yet.  

The neighborhood search with the reduced local 

space during the iteration is a popular additional 

technique in many recent swarm-based 

metaheuristics. This technique was first introduced in 

the marine predator algorithm (MPA). Then, many 

metaheuristics proposed by Dehghani utilize this 

technique too, such as in POA [11], MA [19], WaOA 

[14], MOA [20], DTBO [22], and so on. This 

circumstance becomes an opportunity to propose 

another additional search besides the neighborhood 

search. 

Based on this problem, this work is aimed at 

introducing a new swarm-based metaheuristics 

designed to provide alternatives for the use of the 

highest quality solution and the neighborhood search 

with declining local search space. This metaheuristic 

is called space hopping algorithm (SSHA). As the 

name suggests, SSHA is designed as a swarm-based 

metaheuristic consisting of a certain number of 

autonomous agents that hop from one place to 

another in the search space. It consists of two directed 

searches and one crossover-based search. The first 

directed search is the motion toward the highest 

quality agent. The second directed search is the 

motion toward the resultant of better agents or away 

from a randomly selected agent. Crossover-based 

search is the crossover between the agent and a 

randomized solution in the first half or second half of 

the space. 

The scientific contribution of this work is as 

follows: 
• A novel metaphor-free swarm-based 

metaheuristic is introduced which consists of 

three searches (two directed searches and one 

crossover-based search). 

• A novel directed search which is the motion 

toward the resultant of better agents or away 

from a randomly selected agent is introduced as 

a complement and benchmark for the motion 

toward the highest quality solution. 

• A new search called hopping search is 

introduced which is the crossover between the 

agent and a randomized solution within the first 

half or second half of the space. 

• A benchmark test is conducted to assess the 

performance of SSHA in handling 23 classic 

functions and compare its performance with five 

recent metaheuristics. 

• Individual search tests are performed to 

compare the performance of the first search and 

second search. 

• Missed search test is performed to assess the 

contribution of the third search. 

The rest of this paper is arranged as follows. The 

recent studies proposing new metaheuristics are 

reviewed in section two. The presentation of the 

proposed metaheuristics, including the fundamental 

concept and reasoning, formalization through 

pseudocode and the mathematical formulation are 

described in section three. The evaluation to 
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investigate the performance of SSHA including the 

result is shown in section four. The more 

comprehensive investigation including the result, 

relation with the theory, strength and weakness, 

computational complexity, and limitations of this 

work are discussed in section five. The conclusion 

and the suggestion for further studies are presented in 

section six. 

2. Related works 

Many swarm-based metaheuristics rely on the 

highest quality solution or highest quality agent as 

their reference for their directed search. Some 

metaheuristics utilize the highest quality solution in a 

dedicative manner. On the other hand, some 

metaheuristics mix the highest quality solution with 

other solutions. 

In particle swarm optimization (PSO) [34] and 

GSO [29], the highest quality solution is mixed with 

the local highest quality solution. In MLBO, the 

highest quality agent is mixed with a randomized 

solution within space [30]. In HLBO, the highest 

quality agent is mixed with the randomly selected 

agent within the swarm [31]. In MLO, the highest 

quality agent is included in a pool consisting of some 

of the highest quality swarm members [32]. In 

TIMBO, the highest quality agent becomes one of the 

three references [33]. In some recent metaphor 

inspired metaheuristics, the highest quality agent is 

presented in specific metaphors, such as iguana on 

the three in COA [9], pioneer zebra in ZOA [7], one  
 

Table 1. Several recent swarm-based metaheuristics 

No Metaheuristic Directed Search Additional Search 

1 NGO [6] motion relative to a randomly selected agent 

neighborhood search with a declining local 

search space during iteration and a small 

local search space in the beginning 

2 ZOA [7] 

motion toward the highest quality agent; 

motion toward a randomly selected agent 

neighborhood search with a declining local 

search space during iteration and a small 

local search space in the beginning 

3 CLO [8] 
motion relative to a randomly selected agent neighborhood search with a declining local 

search space during iteration 

4 OOA [35] 

motion toward a randomly selected agent 

from a pool consisting of all better agents and 

highest quality agent 

neighborhood search with a declining local 

search space during iteration 

5 TIA [25] motion relative to all other agents - 

6 TDO [10] 

motion relative to a randomly selected agent neighborhood search with a declining local 

search space during iteration; small local 

search space in the beginning; and the 

probability of conducting this search in 

every iteration is 0.5 

7 ASBO [26] 

motion relative to the middle between the 

highest quality and worst agents; motion 

toward the gap between the highest quality 

and worst agents; motion away from the 

highest quality agent 

- 

8 MOA [20] 

motion toward the highest quality agent; 

motion to avoid a randomly selected agent 

from a pool consisting of the worse agents;  

neighborhood search with a declining local 

search space during iteration 

9 ALO [27] 

motion of the agent toward the highest quality 

agent or motion of the highest quality agent 

away from the agent; motion of the second 

reference avoiding the agent or the agent 

avoiding the second reference where the 

second reference is the middle between the 

highest quality agent and a randomly selected 

agent or the middle between two randomly 

selected agents. 

full random search if stagnation occurs 

10 this work 

motion toward the highest quality agent; 

motion toward the resultant of better agents or 

avoid a randomly selected agent  

arithmetic crossover between the agent and 

a randomized solution in the first half or 

second half of the search space 
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of the female anaconda in GAO [16], the strongest 

WaOA [14], mother in MOA [20], one of the preys 

in TDO [10], one of the driving instructor in DTBO 

[22], one of the underwater fishes in OOA [35], and 

so on. 

Besides the highest quality agent, there are other 

references used in the directed search in some recent 

swarm-based metaheuristics. Once again, in the 

metaphor-inspired ones, they are represented in some 

metaphors. In NGO, prey means a randomly selected 

agent within swarm [6]. In COA, iguana on the 

ground represents a randomized solution within the 

space [9]. In ZOA, the other zebra who attacks the 

lion represents a randomly selected agent within the 

swarm [7]. The prey in POA represents a randomized 

solution within space [11]. 

Many swarm-based metaheuristics are also 

enriched with additional search rather than directed 

search only. The neighborhood search or local search 

with declining local search space during the iteration 

becomes a popular method. This method was first 

introduced in MPA [36]. Then, some metaheuristics 

use this method with certain metaphors, like chasing 

and escaping in NGO [6], flying on the water surface 

in POA [11], carrying the caught fish in OOA [35], 

adapting to the new environment in MA [19], 

upbringing in MOA [20], and so on. Meanwhile, 

some swarm-based metaheuristics still consist of 

only directed search, such as in TIA [25], ASBO [26], 

GSO [29], GJO [18], and so on. 

Table 1 summarizes the strategy performed by 

some recent swarm-based metaheuristics. In Table 1, 

the review is split between the directed searches 

performed by the related metaheuristics and the 

additional searches beside the directed searches. The 

last row consists of the strategy performed by the 

proposed metaheuristic in this paper. 

Based on this explanation and strengthened with 

the summary in Table 1, the opportunity to propose a 

new reference in the directed search and new method 

as an additional search.  As presented, the use of 

neighbourhood search is more popular than the 

crossover technique. 

3. Model 

SSHA is constructed based on the fundamental 

concept that all agents will hop from one location to 

another location within space. This hopping process 

is conducted by using directed search and crossover-

based search. The neighborhood search is not 

implemented in SSHA. 

SSHA performs three sequential steps during the 

search to improve the quality of the current agents. In 

the first step, the agent performs the directed search 

by moving toward the highest quality solution. In the 

second step, the agent performs the directed search 

by moving toward the resultant of the better agents or 

away from a randomly selected agent within the 

swarm. The third search is a crossover-based search 

of the agent with a randomized solution within the 

first half or second half of the search space. In SSHA, 

the rigid acceptance rule is implemented to prevent 

the agent from moving to the worse solution. This 

objective is obtained by accepting the solution child 

to replace the current solution only if the 

improvement takes place. 

The first search, which is the motion toward the 

highest quality solution is used as this search is 

common in many swarm-based metaheuristics. This 

search is proven superior, especially for the 

exploitation purpose. Based on this consideration, the 

motion toward the highest quality solution is chosen 

to ensure the competitiveness of SSHA compared to 

the existing and recent swarm-based metaheuristics. 

As SSHA implements the rigid acceptance rule, the 

highest quality agent in the current iteration will 

always be the highest quality solution. 

The second search is perceived as limited 

exploration. In this search, an agent will trace all 

other agents in the swarm. All other agents whose 

quality is better than the corresponding agent will be 

collected in a pool. Then, the resultant of these better 

agents is calculated based on the average location of 

them in every dimension without considering the 

normalized quality of each better agent. This resultant 

or average location can be calculated only if there is 

at least one better agent in the pool. Then, the agent 

moves toward this resultant of better agents. But there 

is a case where there are not any better agents that can 

be found. It means that this corresponding agent is the 

highest quality agent. When this circumstance 

happens, then an agent in the swarm is picked 

randomly to become the reference. As this randomly 

selected agent is worse than the corresponding agent, 

then the agent will avoid the randomly selected agent. 

The third search is designed for adaptive search. 

If the improvement occurs after the agent performs 

the first and second searches, then the agent still 

focuses on searching in its current area. On the other 

hand, if the stagnation occurs after the agent performs 

the first and second searches, then the agent will 

move toward a certain location in another area. This 

movement is conducted by an equal arithmetic 

crossover between the agent and the reference. The 

reference is generated uniformly within the selected 

area. 

In every dimension, the search space is split into 

two equal size areas: the first half of the space and the 

second half of the space. If the agent is in the first half 
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of the space and improvement occurs, then the 

reference is generated within the first half of the 

space. Otherwise, the reference is generated within 

the second half of the space. If the agent is in the 

second half of the space and improvement occurs, 

then the reference is generated within the second half 

of the space. Otherwise, the reference is generated 

within the first half of the space. 

The formal description of SSHA is presented 

through pseudocode and mathematical formulation. 

The pseudocode of SSHA is presented in algorithm 1. 

Meanwhile, the mathematical formulation of SSHA 

is presented in Eqs. (1)-(16). Below are the 

annotations used in this paper. 

 

A agent 

A swarm or set of agents 

ab highest quality agent 

al lower boundary of the space 

au upper boundary of the space 

am middle of the space 

ate1 agent before the first search  

ate2 agent after the second search 

arb resultant of better agents 

ars randomly selected agent 

arc randomized agent for the space 

asc agent’s child 

D dimension 

F objective function 

I index for agent 

j index for dimension 

n swarm size 

r1 real uniform random number [0, 1] 

r2 integer uniform random number [1, 2] 

t Iteration 

tm maximum iteration 

U uniform random 

 

The SSHA is constructed based on swarm 

intelligence. As a swarm, SSHA consists of a set of 

swarm or autonomous agents which is presented in 

Eq. (1).  

 

𝐴 = {𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛}     (1) 

 

In the initialization phase, all agents are generated 

randomly within the search space. This process 

follows uniform distribution so that all agents can be 

generated anywhere within the space in equal 

probability. It is formalized using Eq. (2). Then, each 

time an agent is generated, the highest quality agent 

is updated using Eq. (3). Eq. (3) represents the rigid 

acceptance rule. 

 

 

algorithm 1: swarm space hopping algorithm 

1 output: ab 

2 begin 

3  for all a in A 

4   initialization of ai using Eq. (2) 

5   update ab using Eq. (3) 

6  end for 

7  t=1 

8  while t ≤ tm 

9   for all a in A 

10    run first search using Eqs. (4) and (5) 

11    run second search using Eqs. (6)-(10) 

12    run third search using Eqs. (11)-(18) 

13    update ab using Eq. (2) 

14   end for 

15   t = t + 1 

16  end while 

17 end 

 

𝑎𝑖,𝑗 = 𝑎𝑙,𝑗 + 𝑟1(𝑎𝑢,𝑗 − 𝑎𝑙,𝑗)     (2) 

 

𝑎𝑏′ = {
𝑎𝑖 , 𝑓(𝑎𝑖) < 𝑓(𝑎𝑏)

𝑎𝑏 , 𝑒𝑙𝑠𝑒
     (3) 

 

The first search is formulated using Eqs. (4) and 

(5). Eq. (4) states that the first child is generated 

based on the motion toward the highest quality agent 

with a uniform step size. Then, Eq. (5) represents the 

rigid acceptance rule for replacing the current value 

of the agent with the first child. 

 

𝑎𝑠𝑐1,𝑗 = 𝑎𝑖,𝑗 + 𝑟1(𝑎𝑏,𝑗 − 𝑟2𝑎𝑖,𝑗)    (4) 

 

𝑎𝑖
′ = {

𝑎𝑠𝑐1,𝑗, 𝑓(𝑎𝑠𝑐1) < 𝑓(𝑎𝑖)

𝑎𝑖, 𝑒𝑙𝑠𝑒
    (5) 

 

The second search is formulated using Eqs. (6)-

(10). Eq. (6) represents the process of collecting all 

better agents into a pool. Eq. (7) formulates the 

resultant of better agents. Eq. (8) states that an agent 

is selected uniformly from the swarm to become the 

reference. Eq. (9) shows that the motion toward the 

resultant of better agents is performed if the pool 

consisting of the better agents is not empty. 

Otherwise, the motion avoiding the randomly 

selected agent is performed. Eq. (10) represents the 

rigid acceptance rule for the replacement of the 

current value of the agent with the second child. 

 

𝐴𝑏𝑒,𝑖 = {𝑎|𝑎 ∈ 𝐴, 𝑓(𝑎) < 𝑓(𝑎𝑖)}   (6) 

 

𝑎𝑟𝑏,𝑖,𝑗 =
∑ 𝑎𝑏𝑒,𝑖,𝑗𝐴𝑏𝑒,𝑖

𝑛(𝐴𝑏𝑒,𝑖)
     (7) 
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𝑎𝑟𝑠,𝑖 = 𝑈(𝐴)      (8) 

 

𝑎𝑠𝑐2,𝑗 = {
𝑎𝑖,𝑗 + 𝑎𝑟1(𝑎𝑟𝑏,𝑖,𝑗 − 𝑟2𝑎𝑖,𝑗), 𝐴𝑏𝑒,𝑖 ≠ ∅

𝑎𝑖,𝑗 + 𝑎𝑟1(𝑎𝑖,𝑗 − 𝑟2𝑎𝑟𝑠,𝑖,𝑗), 𝑒𝑙𝑠𝑒
  (9) 

 

𝑎𝑖
′ = {

𝑎𝑠𝑐2,𝑗, 𝑓(𝑎𝑠𝑐2) < 𝑓(𝑎𝑖)

𝑎𝑖, 𝑒𝑙𝑠𝑒
               (10) 

 

The third search is formulated using Eqs. (11)-

(17). Eq. (11) is used to calculate the middle point in 

every dimension. Eq. (12) states that the first hop 

reference is generated uniformly within the first half 

of the space. Eq. (13) states that the second hop 

reference is generated uniformly within the second 

half of the space. Eq. (14) shows that the 

improvement-based reference is chosen in another 

area of the agent. Eq. (15) shows that the stagnation-

based reference is chosen in the same area as the 

agent. Eq. (16) states that the reference of the third 

search is chosen based on the condition of stagnation 

or improvement. Eq. (17) represents the balance 

arithmetic crossover between the agent and the third 

reference. Eq. (18) represents the rigid acceptance 

rule in the third search. 

 

𝑎𝑚,𝑗 =
𝑎𝑙,𝑗+𝑎𝑢,𝑗

2
                (11) 

 

𝑎𝑓ℎ,𝑗 = 𝑎𝑙,𝑗 + 𝑟1(𝑎𝑚,𝑗 − 𝑎𝑙,𝑗)              (12) 

 

𝑎𝑠ℎ,𝑗 = 𝑎𝑚,𝑗 + 𝑟1(𝑎𝑢,𝑗 − 𝑎𝑢,𝑗)              (13) 

 

𝑎𝑖𝑚,𝑖,𝑗 = {
𝑎𝑓ℎ,𝑗, 𝑎𝑙,𝑗 ≤ 𝑎𝑖,𝑗 ≤ 𝑎𝑚,𝑗

𝑎𝑠ℎ,𝑗, 𝑎𝑚,𝑗 < 𝑎𝑖,𝑗 ≤ 𝑎𝑢,𝑗
              (14) 

 

𝑎𝑠𝑔,𝑖,𝑗 = {
𝑎𝑠ℎ,𝑗, 𝑎𝑙,𝑗 ≤ 𝑎𝑖,𝑗 ≤ 𝑎𝑚,𝑗

𝑎𝑓ℎ,𝑗, 𝑎𝑚,𝑗 < 𝑎𝑖,𝑗 ≤ 𝑎𝑢,𝑗
              (15) 

 

𝑎𝑡ℎ,𝑖,𝑗 = {
𝑎𝑖𝑚,𝑖,𝑗, 𝑓(𝑎𝑡𝑒2,𝑗) < 𝑓(𝑎𝑡𝑒1,𝑗)

𝑎𝑠𝑔,𝑖,𝑗, 𝑒𝑙𝑠𝑒
             (16) 

 

𝑎𝑠𝑐3,𝑗 =
𝑎𝑖,𝑗+𝑎𝑡ℎ,𝑖,𝑗

2
                (17) 

 

𝑎𝑖
′ = {

𝑎𝑠𝑐3,𝑗, 𝑓(𝑎𝑠𝑐3) < 𝑓(𝑎𝑖)

𝑎𝑖, 𝑒𝑙𝑠𝑒
             (18) 

4. Simulation and result 

There are three assessments in this work to 

evaluate the performance of SSHA. The first 

assessment is the benchmark test to compare the 

performance of SSHA as a whole package with five 

recent metaheuristics. The second assessment is the 

individual search test to compare the performance of 

the first search with the second search. The third 

assessment is the missed search test to measure the 

contribution of the third search. 

The reasoning behind these assessments is as 

follows. The first assessment is conducted to measure 

the improvement of the current work, i.e., the 

proposed SSHA in the development of metaheuristics. 

Due to this consideration, SSHA should be 

benchmarked with several recent metaheuristics 

rather than the older ones such as PSO. The second 

assessment is conducted to measure the performance 

of the first and second searches as a single search. By 

drawing back to the objective of this work, this 

second assessment is important to measure the 

comparative performance of the second search which 

use the resultant of the better agents or the randomly 

selected agent with the first search whose reference is 

the highest quality agent. The third assessment is 

conducted to measure the contribution of the third 

search in SSHA. 

The mechanism of each assessment is as follows. 

In the first assessment, SSHA is benchmarked with 

five recent swarm-based metaheuristics: NGO, ZOA, 

CLO, OOA, and TIA. NGO, ZOA, and were first 

introduced in 2022. Meanwhile, OOA and TIA were 

first introduced in 2023. In the second assessment, 

both the first and second searches are tested 

individually. In the third assessment, SSHA is tested 

with the third search is inactive. This third assessment 

is performed with this mechanism because the option 

of whether a randomized solution is generated in the 

first half, or second half of the search space depends 

on whether the improvement takes place after the first 

and second half searches are conducted. It means that 

the third search cannot be conducted independently 

like in the second assessment. In all three assessments, 

the set of 23 functions is chosen as the use case. The 

detailed description of these functions is exhibited in 

Table 2. These functions can be grouped as seven 

high dimension unimodal functions (HDUF), six high 

dimension multimodal functions (HDMF), and ten 

fixed dimension multimodal functions (FDMF). In 

this assessment, the swarm size is set to 5 while the 

maximum iteration is set to 10. 

The result of the first assessment is presented in 

Table 3 to Table 6. Table 3 to Table 5 exhibit the 

results in solving HDUF, HDMF, and FMDF 

consecutively. In these tables, there are three 

parameters: the average fitness score (mean), 

standard deviation, and the mean rank. Then, the 

result in these tables is summarized in Table 6, that 

presents the superiority of SSHA compared to the 

benchmark metaheuristics based on the number of 
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Table 2. List of 23 Functions 

No Function Type Dimension Search Space Target 

1 Sphere HDUF 50 [-100, 100] 0 

2 Schwefel 2.22 HDUF 50 [-100, 100] 0 

3 Schwefel 1.2 HDUF 50 [-100, 100] 0 

4 Schwefel 2.21 HDUF 50 [-100, 100] 0 

5 Rosenbrock HDUF 50 [-30, 30] 0 

6 Step HDUF 50 [-100, 100] 0 

7 Quartic HDUF 50 [-1.28, 1.28] 0 

8 Schwefel HDMF 50 [-500, 500] -12,569 

9 Ratsrigin HDMF 50 [-5.12, 5.12] 0 

10 Ackley HDMF 50 [-32, 32] 0 

11 Griewank HDMF 50 [-600, 600] 0 

12 Penalized HDMF 50 [-50, 50] 0 

13 Penalized 2 HDMF 50 [-50, 50] 0 

14 Shekel Foxholes FDMF 2 [-65, 65] 1 

15 Kowalik FDMF 4 [-5, 5] 0.0003 

16 Six Hump Camel FDMF 2 [-5, 5] -1.0316 

17 Branin FDMF 2 [-5, 5] 0.398 

18 Goldstein-Price FDMF 2 [-2, 2] 3 

19 Hartman 3 FDMF 3 [1, 3] -3.86 

20 Hartman 6 FDMF 6 [0, 1] -3.32 

21 Shekel 5 FDMF 4 [0, 10] -10.153 

22 Shekel 7 FDMF 4 [0, 10] -10.402 

23 Shekel 10 FDMF 4 [0, 10] -10.536 

 
Table 3. Fitness score comparison in solving high dimension unimodal functions 

F Parameter NGO [6] ZOA [7] CLO [8] OOA [35] TIA [25] SSHA 

1 mean 6.6935x103 1.5097x10 1.4629x103 2.4215x102 3.8223x10 0.4651 

std deviation 3.8910x103 1.0371x10 5.8192x102 1.3656x102 1.1235x10 0.4238 

mean rank 6 2 5 4 3 1 

2 mean 2.8971x1041 0.0000 0.0000 0.0000 0.0000 0.0000 

std deviation 1.3276x1042 0.0000 0.0000 0.0000 0.0000 0.0000 

mean rank 6 1 1 1 1 1 

3 mean 1.2614x105 6.5189x103 7.0659x104 2.4752x104 4.3191x103 1.0452x103 

std deviation 6.0468x104 4.7197x103 3.4872x104 1.3948x104 3.7101x103 1.3509x103 

mean rank 6 3 5 4 2 1 

4 mean 5.0224x10 2.9712 4.5555x10 1.3173x10 4.5422 0.5342 

std deviation 1.6462x10 0.8237 1.3980x10 3.6644 0.9554 0.2291 

mean rank 6 2 5 4 3 1 

5 mean 2.4020x106 2.5396x102 4.4654x105 1.4721x104 6.9186x102 5.4297x10 

std deviation 1.9270x106 1.5894x102 5.5740x105 1.3323x104 3.2103x102 4.2573 

mean rank 6 2 5 4 3 1 

6 mean 6.2219x103 2.4536x10 1.5854x103 2.3537x102 4.4562x10 1.1527x10 

std deviation 4.4632x103 8.8552 9.9245x102 1.2769x102 1.2788x10 0.7695 

mean rank 6 2 5 4 3 1 

7 mean 2.5952 0.0597 0.6881 0.1789 0.0960 0.0376 

std deviation 2.0984 0.0418 0.4793 0.0828 0.0830 0.0256 

mean rank 6 2 5 4 3 1 

 

 

functions where SSHA is better than the benchmark 

metaheuristics in every group of functions. 

The result of the benchmark test on solving the 

high dimension unimodal indicates the superiority of 

SSHA among its benchmarks. SSHA is placed on the 

first rank in all seven functions. SSHA is on the 

distinct first rank in six functions (Sphere, Schwefel 

1.2, Schwefel 2.21, Rosenbrock, Step, and Quartic). 

Meanwhile, four benchmarks (ZOA, CLO, OOA< 

and TIA) are also on the first rank in solving 

Schwefel 2.22. NGO is the only benchmark that fails 

to find global optimal solution in solving Schwefel  
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Table 4. Fitness score comparison in solving high dimension multimodal functions 

F Parameter NGO [6] ZOA [7] CLO [8] OOA [35] TIA [25] SSHA 

8 mean -2.9010x103 -2.6135x103 -3.7549x103 -3.2200x103 -2.2191x103 -2.7835x103 

std deviation 4.8799x102 4.3289x102 7.4709x102 5.3006x102 4.9380x102 3.5067x102 

mean rank 3 5 1 2 6 4 

9 mean 4.5224x102 3.4043x10 3.2789x102 1.4311x102 9.9151x10 0.6584 

std deviation 5.1058x10 2.6274x10 5.8803x10 5.2123x10 5.9712x10 0.8328 

mean rank 6 2 5 4 3 1 

10 mean 1.2389x10 1.2686 8.3157 4.1323 2.1621 0.1436 

std deviation 2.6812 0.4219 2.0913 0.7806 0.2054 0.0950 

mean rank 6 2 5 4 3 1 

11 mean 4.8793x10 0.9348 1.5395x10 2.6572 1.2710 0.1774 

std deviation 2.5282x10 0.2986 7.0892 0.6676 0.1375 0.2236 

mean rank 6 2 5 4 3 1 

12 mean 1.5424x106 1.2421 1.2127x104 3.5396 1.1535 1.0838 

std deviation 4.4874x106 0.2281 3.5356x104 1.0136 0.2782 0.1215 

mean rank 6 3 5 4 2 1 

13 mean 7.0407x106 4.1103 7.6172x105 3.2147x102 4.8336 3.4418 

std deviation 9.2873x106 0.5167 1.4166x106 1.4743x103 0.7374 0.1574 

mean rank 6 2 5 4 3 1 

 
Table 5. Fitness score comparison in solving fixed dimension multimodal functions 

F Parameter NGO [6] ZOA [7] CLO [8] OOA [35] TIA [25] SSHA 

14 mean 2.8906x10 1.2015x10 6.2461 1.1465x10 1.2062x10 8.6731 

std deviation 5.2816x10 3.6126 3.6463 5.9028 4.2835 3.5572 

mean rank 6 4 1 3 5 2 

15 mean 0.0359 0.0087 0.0195 0.0206 0.0135 0.0099 

std deviation 0.0260 0.0194 0.0223 0.0280 0.0229 0.0224 

mean rank 6 1 4 5 3 2 

16 mean -0.8334 -0.8073 -1.0175 -1.0120 -0.9713 -0.9824 

std deviation 0.2356 0.2698 0.0180 0.0213 0.1205 0.0756 

mean rank 5 6 1 2 4 3 

17 mean 1.4290 1.7241 0.5310 0.4299 1.8852 0.4524 

std deviation 1.7531 2.5879 0.2960 0.0539 2.3960 0.1380 

mean rank 4 5 3 1 6 2 

18 mean 3.0933x10 5.1131x10 1.3631x10 9.8168 2.7783x10 1.6619x10 

std deviation 2.0710x10 9.0647x10 1.2212x10 1.8432x10 3.4359x10 1.4874x10 

mean rank 5 6 2 1 4 3 

19 mean -0.0495 -0.0495 -0.0495 -0.0495 -0.0495 -0.0495 

std deviation 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

mean rank 1 1 1 1 1 1 

20 mean -2.1506 -2.1701 -2.6642 -2.7675 -2.2435 -2.8172 

std deviation 0.4684 0.5728 0.3864 0.3433 0.4664 0.2644 

mean rank 6 5 3 2 4 1 

21 mean -0.9393 -1.7589 -2.1284 -1.6190 -1.3853 -2.8429 

std deviation 0.6434 0.8859 0.9312 0.8122 0.6772 1.4576 

mean rank 6 3 2 4 5 1 

22 mean -1.0776 -1.6840 -2.3917 -1.5679 -1.8269 -2.9753 

std deviation 0.7077 0.9235 1.1228 0.6123 0.9398 1.4986 

mean rank 6 4 2 5 3 1 

23 mean -1.1107 -1.8512 -1.9761 -2.0995 -2.0372 -3.1037 

std deviation 0.3108 1.1212 0.6019 0.4490 1.0836 1.7178 

mean rank 6 5 4 2 3 1 
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Table 6. Group based superiority of SSHA 

Group Number of Functions Where SSHA is 

Better 

NGO 

[6] 

ZOA 

[7] 

CLO 

[8] 

OOA 

[35] 

TIA 

[25] 

1 7 6 6 6 6 

2 5 6 5 5 6 

3 9 8 6 6 9 

Total 21 20 17 17 21 

 
Table 7. Individual search of the first and second searches 

Function First Search Second Search 

1 1.2953x102 7.6227x10 

2 0.0000 0.0000 

3 1.4930x104 1.0691x104 

4 1.0467x10 1.1976x10 

5 3.3259x103 4.1609x103 

6 1.3882x102 8.7650x10 

7 0.1322 0.1019 

8 -2.5414x103 -2.3756x103 

9 1.1454x102 1.3746x102 

10 3.2360 2.8068 

11 1.9605 1.7657 

12 2.2572 1.8758 

13 9.8091 6.6766 

14 1.1927x10 1.9388x10 

15 0.0248 0.0213 

16 -0.9447 -0.9699 

17 4.9858 2.3364 

18 3.0237x10 1.6916x10 

19 -0.0495 -0.0495 

20 -1.9298 -2.0196 

21 -1.2960 -1.2029 

22 -1.2082 -1.3758 

23 -1.5572 -1.5025 

 

2.22. The gap between SSHA as the highest quality 

metaheuristic and the worst metaheuristic in solving 

HDUF is wide. 

The result of the benchmark test on solving the 

high dimension multimodal functions still indicates 

the superiority of the SSHA among its benchmarks. 

SSHA is on the first rank on five functions (Rastrigin, 

Ackley, Griewank, Penalized, and Penalized 2) out of 

six functions. Meanwhile, SSHA is on the fourth rank 

after CLO, OOA, and NGO in solving Schwefel. The 

performance gap between the highest quality 

performer and the worst performer in the high 

dimension multimodal functions is also wide except 

in solving Schwefel. 

Table 5 shows that SSHA is still competitive in 

solving the fixed dimension multimodal functions. 

Among these ten functions, SSHA becomes the 

highest quality performer in five functions, the 

second-highest quality performer in three functions, 

and the third highest quality performer in two 

 

Table 8. Result of the third search 

F with 3rd 

Search 

without 3rd 

Search 

Significantly 

Affected 

1 0.4651 0.3264 no 

2 0.0000 0.0000 no 

3 1.0452x103 1.3164x103 no 

4 0.5342 0.7527 no 

5 5.4297x10 5.3576x10 no 

6 1.1527x10 1.1072x10 no 

7 0.0376 0.0380 no 

8 -2.7835x103 -3.0083x103 no 

9 0.6584 1.6059 yes 

10 0.1436 0.1277 no 

11 0.1774 0.1529 no 

12 1.0838 1.0717 no 

13 3.4418 3.4149 no 

14 8.6731 1.1034x10 no 

15 0.0099 0.0128 no 

16 -0.9824 -0.9128 no 

17 0.4524 4.1126 yes 

18 1.6619x10 3.9495x10 yes 

19 -0.0495 -0.0495 no 

20 -2.8172 -2.2825 no 

21 -2.8429 -1.8243 no 

22 -2.9753 -2.0512 no 

23 -3.1037 -1.7698 no 

 

functions. It means that SSHA is never in the lower 

half of the metaheuristics involved in this test. SSHA 

is the highest quality performer in solving Hartman 3, 

Hartman 6, Shekel 5, Shekel 7, and Shekel 10. But 

the note is that all metaheuristics achieve the same 

result in solving Hartman 3. It means that SSHA 

becomes the distinct highest quality of only four 

functions. SSHA is the second-highest quality 

performer in solving Shekel Foxholes, Kowalik, and 

Branin. Meanwhile, SSHA becomes the third highest 

quality performer in solving Six hump camel and 

Goldstein price. Different from the first and second 

groups, the performance gap between the highest 

quality and worst performers in this third group is 

narrow. 

Table 6 enhances the superiority of SSHA among 

its benchmarks. Overall, SSHA is better than NGO, 

ZOA, CLO, OOA, and TIA in 21, 20, 17, 17, and 21 

functions respectively. It means that SSHA is 

superior to NGO, ZOA, and TIA in almost all 

functions. SSHA is never worse than TIA as SSHA 

and TIA achieve equal results in two functions. 

SSHA is worse than ZOA only in one function and 

SSHA is worse than NGO only in two functions. 

SSHA is superior to CLO and OOA in almost all 

functions in the first and second groups of functions. 

Meanwhile, SSHA is slightly superior to CLO and 

OOA in the third group of functions. Although the 

total number of functions where SSHA is better than 
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CLO is equal with the total number of functions 

where SSHA is better than OOA, the composition of 

these functions is different in the fixed dimension 

multimodal functions as it can be seen in Table 5.  

This circumstance also occurs between NGO and 

TIA. The number of functions where SSHA is better 

than NGO is equal to the number of functions where 

SSHA is better than TIA. But the composition of 

these functions is different as the summary can be 

seen in Table 6 and the detail rank can be seen in 

Table 3 to Table 5. 

The result of the second assessment is presented 

in Table 7. The only parameter presented in Table 7 

is the average fitness score obtained from the 

individual search test. The second row presents the 

result regarding the first search, while the third row 

presents the result regarding the second search. The 

better result is presented in bold font. 

Table 7 indicates that the second search is 

superior to the first search. The first search is better 

than the second search in seven functions, while the 

second search is better than the first search in 

fourteen functions. In two functions, both searches 

achieve the equal result. The superiority of the second 

search to the first search occurs in all groups of 

functions. 

Table 8 presents the result of the third test. Same 

as the second test, the only parameter is the average 

fitness score. Table 8 consists of four columns: the 

function, the average fitness score where all searches 

are active, the average fitness score with the absence 

of the third search, and the status whether the 

performance of SSHA drops significantly in the 

absence of the third search. 

Table 8 indicates that the presence of the third 

search is not so significant as the first and second 

searches. The performance of SSHA drops 

significantly only in three functions where all of them 

are multimodal functions. 

5. Discussion 

This section presents the comprehensive analysis 

regarding the results. There are four aspects discussed 

in this section. The first aspect is the performance of 

SSHA in solving the 23 functions and the comparison 

with the benchmark metaheuristics. The second 

aspect is the result of the individual search test that 

compares the first directed search with the second 

directed search. The third aspect is the result of the 

missed search to evaluate the contribution of the 

crossover-based search. The fourth aspect is the 

computational complexity of the SSHA. The fifth 

aspect is the limitations of this work, especially the 

SSHA.  

The superiority of SSHA in all groups of 

functions can be perceived as superiority of 

exploration and exploitation capabilities of SSHA. 

The superiority of SSHA in solving the high 

dimension unimodal functions indicates that SSHA 

has superior exploitation capability. The superiority 

of SSHA in solving the high dimension multimodal 

functions indicates that SSHA has superior 

exploration capability, especially in avoiding the 

local optimal entrapment. The competitiveness of 

SSHA in solving the fixed dimension multimodal 

functions indicates that SSHA has a good balance 

between exploration and exploitation capabilities.  

The result in the second test shows that the 

combination between the resultant of better agents 

and a randomly selected agent is more powerful than 

the highest quality agent. This result also meets the 

one of the objectives of this work which is creating 

an alternative reference despite being the highest 

quality agent.  

The computational complexity is important part 

in the investigation of any algorithm as it affects the 

computational consumption. Specifically, the 

computational complexity is important to investigate 

which parameters increase the computational process 

and how the computational process grows due to the 

change of the value of these parameters. When all 

agents are firstly generated or initialized, there is a 

loop that runs based on the swarm size where each 

iteration represents the generation of an agent. Then, 

within this iteration, there is a loop that runs for the 

whole dimension to generate the initial value of each 

dimension regarding this agent. Based on this 

analysis, the complexity during the initialization is 

presented as O(n(S)×d). Then, when the optimization 

process comes for the iteration process, there is a loop 

that runs from the first iteration until the maximum 

iteration. Then, within this iteration, there is a loop 

that runs for the whole swarm which means that all 

agents perform searching process. Each agent 

performs the three searches. Within every search, 

tracing for whole dimension is performed. 

Meanwhile, in the second search, each agent will 

trace the whole swarm to collect all better agents and 

find its resultant. Based on this explanation, the 

computational complexity during the iteration 

process can be presented as O(tm×n(S)×(2+n(S))×d). 

Despite the superiority of SSHA and its 

successful attempt as a new metaheuristic, there are 

limitations exposed in this work. These limitations 

can be split between the algorithm and the evaluation. 

There are various stochastic approaches that already 

exist, but it is impossible to accommodate all these 

approaches. SSHA uses only the uniform distribution 

although there are other stochastic distributions, such 
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as normal, Poisson, exponential, Levy, Brownian, 

and so on. Each of them has its own characteristic, 

strength, and weakness. Applying other stochastic 

distribution into SSHA will be interesting work. 

Meanwhile, there are also a lot of entities that can be 

chosen as reference despite the highest quality agent 

which is proven inferior to the combination of the 

resultant of better agents and a randomly selected 

agent. Moreover, there are various local searches and 

evolutionary-based search can be further explored. In 

the use case aspect, there are several other sets of 

functions already exist and available to be chosen as 

a theoretical use cases. Moreover, there are also 

various practical problems can be chosen to 

investigate the performance of SSHA in the more 

comprehensive manner, whether these problems are 

numerical problems or combinatorial problems. 

6. Conclusion 

This paper has presented the proposed swarm-

based metaheuristic called space hopping algorithm 

(SSHA). The fundamental concept of SSHA has been 

presented which is accommodating both directed 

search and arithmetic crossover. There are three 

references used in the directed search: highest quality 

agent, the resultant of better agents, and a randomly 

selected agent. The result of the benchmark 

evaluation shows that SSHA is superior to its five 

benchmarks by outperforming NGO, ZOA, CLO, 

OOA, and TIA in 21, 20, 17, 17, and 21 functions out 

of 23 functions consecutively. The result of the 

comparison test between the first search and second 

search shows that the combination of the resultant of 

better agents and a randomly selected agent is better 

than the highest quality agent as the second search 

achieves better result in 14 functions and same result 

in only 2 functions. The result of the significance test 

shows that the contribution of the crossover search 

run in the third search is less significant as the 

directed search is proven to be more dominant as the 

existence of the third result improves the quality of 

the solution significantly only in 3 functions. 

Fortunately, this crossover search has potential as a 

replacement for the neighbourhood search with 

declining local search space as it is used in many 

recent swarm-based metaheuristics. 

In the future, this proposed SSHA can be refined 

in several ways. The directed search toward the 

resultant of better agents or away from the 

randomized worse agent can be improved by mixing 

it with other references. Moreover, more exploration 

of arithmetic crossover should be improved to make 

it more significant compared to the directed search. 

Besides, more evaluations, especially based on the 

practical problems, are needed to investigate its 

strengths and weaknesses in a more comprehensive 

manner. 
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