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Abstract: This paper presents an adaptive neural network acting like a proportional-integral-derivative (PID) 

controller that uses an intelligent meta-heuristic technique to improve the drug infusion rate (propofol) as a 

manipulated variable in closed-loop control of anesthesia systems using the Bispectral Index (BIS) as the primary 

controlled variable. The effect of propofol on the human body is modelled using the pharmacokinetic (PK) and 

pharmacodynamics (PD) models. A physiological dataset of patients, including gender, weight, height, age, and the 

like, determines the parameters of the PK/PD mathematical model. The proposed controller seeks to provide the 

optimal propofol control action, which is in charge of swiftly, precisely, and accurately maintaining a triad of hypnosis, 

analgesia, and neuromuscular blockade by infusing several drugs that are specific to each state. To train this neural 

network like a PID controller with the radial basis function (RBF) in a neuron, the meta-heuristic method is employed. 

The first technique is particle swarm optimization (PSO), which has been widely used in both data estimation and 

training because of its quick computing speed, while the second technique is the chaotic PSO algorithm, and the third 

technique is the modified CPSO algorithm (MCPSO). The fundamental proposed procedures of the MCPSO algorithm 

use the chaos method, including the coefficients of acceleration, and remove the two random parameters from the 

velocity update equation to generate more randomness in the search space to quickly solve the local minima problem. 

The PSO, CPSO, and MCPSO meta-heuristic algorithms use the mean square error (MSE) performance index to find 

and optimize the optimal or the nearly ideal gain parameters of the nonlinear neural network to function like a PID 

controller. The simulation results show that the proposed controller for different physiological dataset patients is 

characterized by its efficacy and resilience in terms of controlling the depth of the hypnosis state and the infusion rate 

of the anesthetic drug during surgery in order to avoid under- or over-dosing of the drug for the patient through the 

desired value of BIS (50) with minimizing the steady-state error, which is equal to zero without any oscillation. 

Moreover, the comparison results showed that the proposed RBF-NN-PID controller enhanced the time in one minute 

to reach the depth of anesthesia at the moderate hypnotic state when compared to the fractional-order adaptive high-

gain controller, in which the time to reach the depth of anesthesia is two minutes. In contrast, the adaptive neuro-fuzzy 

controller reached the depth of anesthesia in three minutes. Therefore, the time was improved by 50% and 67%, 

respectively. In particular, the surgery BIS index was kept at the BIS desired 50 at the moderate hypnotic state without 

any error and with no oscillation at steady-state. 

Keywords: Anesthesia system, Chaotic particle swarm optimization, Propofol rate, Radial basis function, Neural 

network like PID controller. 

 

 

1. Introduction 

In simple terms, anesthesia is the medical 

profession’s means of guaranteeing that a patient’s 

body remains painless throughout surgical 

procedures. On the other hand, the anesthetic was 

first used almost a century ago. In particular, propofol 

has been the best agent for intravenous technique-

maintained anesthesia since the mid-1980s [1]. Deep 

anesthesia could not be achieved before the automatic 

control was activated. In contrast to all other clinical 

drug treatments for anesthesia, the prompt onset of 

anesthetic medications and the required, regular 
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monitoring of their potentially harmful symptoms are 

distinct. In theory, a closed-loop controller might be 

used to generate a personalized general anesthetic 

without the need for expensive and time-consuming 

hereditary pre-screening [2]. Regarding the amount 

of duties they complete each day, the number of 

anesthesiologists has increased in recent years. They 

use physiological indicators and their intuition to 

balance the dosage of hypnotics and muscle relaxants. 

In particular, the anesthesiologist functions as a 

manual feedback controller in certain ways [3]. 

Moreover, many types of anesthetic drug controllers 

were developed in the anesthetic system to keep the 

patient’s depth of hypnotic at a BIS index value of 50 

at the surgical procedure band. For instance, the 

authors in [4] proposed an intelligent controller based 

on a neural network and a fuzzy logic algorithm to 

enhance the depth of hypnotics for no cardiac surgery. 

They used nine rules for the fuzzy logic controller 

and a neural network for the identifier to improve and 

fasten the output signal BIS, which reached the 

desired value of 50 with steady-state error. However, 

the drawbacks of this controller are that the Jacobean 

of the PK/PD model based on the multi-layer neural 

perceptron has insufficient learning that leads to 

errors in the output and that the propofol control 

action has a big spike in the response. In addition, the 

authors in [5] explained an advanced regulatory 

system based on the PID controller and the model 

predictive controller (MPC)for first-order plus time-

delay approximation of the PK/PD model to modify 

the level of patients’ hypnotic during surgical 

operation, and they used the trial-and-error method to 

tune the parameters of the PID controller and the 

prediction horizon for the weights of the MPC. 

However, the issue with this controller is that the 

model is built as a first-order model, while in fact, the 

PK/PD model is of third-order, which leads the actual 

BIS to reach the steady state in 10 minutes for a 

moderately hypnotic state with a value of 50. In [6], 

the authors described the control of anesthesia 

concentration using a PID controller using a trial-

and-error method for tuning the controller parameters 

to obtain the propofol control action for the PK-PD 

model. Nevertheless, the problem with this PID 

controller is that the trial-and-error method for tuning 

the controller parameters leads to small errors with 

undershoots in the BIS response. Furthermore, in [7], 

the authors designed an adaptive neuro-fuzzy 

controller for anesthesia using the linear PK/PD 

patient model. The authors used three membership 

values and two variable gains with the trial-and-error 

method to obtain the two control gains in the control 

law. As a result, the controller generates a quick and 

suboptimal value of the propofol control action, 

which causes a slight oscillation in the BIS index 

value at 3 minutes without error in the steady-state 

response. However, the issue with this controller is 

that the two control gains in the control law obtained 

from the trial-and-error method led to errors in the 

output response of BIS because the propofol control 

action generated from the control law was not the 

optimal control action. Moreover, in [8], the authors 

proposed a fractional order controller that was built 

for the linear PK/PD model, using an adaptive high-

control gain that starts from 1000 for all patients 

using the trial-and-error method to obtain the control 

law gain. Therefore, the controller generates a fast but 

non-optimal value of the propofol control action, 

which leads to an actual BIS value of zero at the 

steady-state error at 2 minutes to reach the moderate 

hypnotic state at a 50 BIS value. However, the 

limitation of this controller is that the only high-

control gain value in the control law obtained from 

the trial-and-error method led to the long-time 

reaching of the moderate hypnotic state. However, in 

[9], the authors illustrated an adaptive Smith 

predictor controller based on the inverse Hill 

equation for generating the propofol drug that 

provided the expected performance, including fast 

transient, small under-overshoot, and limited BIS 

oscillation. However, this controller’s drawback is 

that the estimation of the hill coefficient is built as a 

linear slope, which leads the actual BIS to reach the 

steady state with less settling time and a small offset 

error. In [10], the authors provided a comprehensive 

overview of the different types of controllers that 

were used in the anesthesia system from 2017 to 2022. 

As a result of this survey, the PID controller 

represents 35% of the controllers used in the 

anesthesia system, 28% for model predictive 

controllers, 13% for fuzzy logic controllers, 13% for 

neural network controllers, and 11% for other 

controllers. 

In this work, the problem definition is that the 

time challenge to reach the depth of anesthesia for the 

patient in a surgical operation is the BIS index value 

within the minimum amount of time possible. This 

problem essentially involves the regulation of the 

propofol infusion drug rate to avoid under- or over-

dosing of the drug for the patient that leads to 

hypotension and postoperative adverse reactions 

during surgical operations or after them. Specifically, 

the main objective of this research is to determine the 

fast and optimal propofol-infusion rate control action 

in order to enhance the performance of the anesthesia 

depth based on the BIS index value during the 

patients’ surgical operations by implementing the 

proposed off-line nonlinear RBF-NN-PID controller 



Received:  March 23, 2024.     Revised: April 10, 2024.                                                                                                   624 

International Journal of Intelligent Engineering and Systems, Vol.17, No.3, 2024           DOI: 10.22266/ijies2024.0630.48 

 

and using a three-heuristic algorithm based on the 

chaos method. 

 In particular, the main scientific contribution of 

this work is to find and tune the optimal or near-

optimal control gain parameters of the nonlinear 

RBF-NN-PID controller using the proposed MCPSO 

algorithm based on the chaos method that uses the 

coefficients of acceleration and removes the two 

random parameters from the velocity update equation 

to generate more randomness in the search space to 

quickly solve the local minima problem. This method 

leads to obtaining the fast and optimal value of the 

rate of anesthetic drug control action that will be 

injected into the patient-based PK/PD model to 

quickly track and stabilize the patient’s depth of 

anesthesia and keep it at a surgery BIS index value 

within a suitable time to avoid under- or over-dosing 

of the drug for the patient that leads to hypotension 

and postoperative adverse reactions during surgical 

operations or after them.  

This paper is organized as follows: In Section 2, 

the pharmacokinetic and pharmacodynamic 

mathematical models are shown. In Section 3, the 

control strategy design is elucidated. In Section 4, the 

simulation’s outcomes are displayed. The key 

findings from this work and upcoming research are 

given in Section 5. 

2. Mathematical model 

The mathematical modeling of dynamic systems 

is the first and most crucial stage in the controller 

design process. Particularly, a more thorough 

comprehension of the system’s behaviour results in a 

more effective controller design, which is made more 

challenging to grasp by the complex, nonlinear, and 

changing dynamics of physiological systems. Based 

on pharmacokinetics (PK) and pharmacodynamics 

(PD) [11], the classic compartmental model of 

anesthesia is presented in this section, as illustrated in 

Fig. 1 and in Table 1. In the PK portion of this model, 

there are three major compartments and one effect 

site compartment located in the PD sector. The 

propofol infusion rate and the BIS index value, 

respectively, are the PK/PD model’s single input and 

single output [10]. 

When patients receive injections of drugs, those 

substances move to different parts of the human body. 

In this regard, determining the amount of injectable 

medication that really reaches the target is crucial. 

The PK model offers a mathematical depiction of 

drug distribution in the human body.  

The three important compartments in this model 

are shown in Fig. 1. It is recognized that essential 

organs, including the liver, brain, and blood, are  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure. 1 The anesthesia model based on PK/PD 

compartment 

 

 

located in the core compartment sometimes referred 

to as compartment V1. The peripheral compartments 

V2 and V3 indicate other bodily sections that receive 

the infused drugs. The muscles and viscera in 

compartment V2 are physiological tissues with good 

blood flow and rapid movement. Conversely, 

because compartment V3 is composed of bone and fat, 

which are two anatomical elements with restricted 

blood flow, it has a sluggish dynamic [7,8,10]. The 

balancing equation for the drug concentration Xi (mg) 

in the ith 1, 2, and 3 compartments can be established 

as given below to create this model [7,8]: 

 

𝑋̇1(𝑡) = 𝑢(𝑡) − 𝐾12𝑋1(𝑡) − 𝐾13𝑋1(𝑡) −
𝐾10𝑋1(𝑡) + 𝐾21𝑋2(𝑡) + 𝐾31𝑋3(𝑡)                            (1) 

 

𝑋̇2(𝑡) = 𝐾12𝑋1(𝑡) − 𝐾21𝑋2(𝑡)                                  (2) 

 

𝑋̇3(𝑡) = 𝐾13𝑋1(𝑡) − 𝐾31𝑋3(𝑡)                                      (3) 

 

where, X1(t), X2(t), and X3(t) are for three different 

compartments. X1(t) stands for the main blood  
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Table 1. Definition of the PK/PD model parameters 

Symbols Definition 

V1 
The volume of liver, brain, and blood 

located in compartment 1 

V2 
The volume of muscles and viscera in 

compartment 2 

V3 
The volume of bone and fat in 

compartment 3 

X1(t) 
The stands for the main blood 

compartment  

X2(t) 
The peripheral fast compartment, such as 

muscles and the Viscera 

X3(t) 
The slow dynamics compartment, such as 

fat or bones 

u(t) 
The propofol infusion rate into the blood 

in (mg/min) 

K12 

The transfer of anesthesia (1/min) from 

the first compartment to the second 

compartment 

K21 

The transfer of anesthesia (1/min) from 

the second compartment to the first 

compartment  

K13 

The transfer of anesthesia (1/min) from 

the first compartment to the third 

compartment 

K31 

The transfer of anesthesia (1/min) from 

the third compartment to the first 

compartment  

K10 The elimination rate constant (1/min) 

W The weight (kg) of the patient 

H The height (cm) of the patient 

lbm The lean body mass 

A The age (in years) of the patient 

Cl1 The clearance of compartment 1 (L/min) 

Cl2 The clearance of compartment 2 (L/min) 

Cl3 The clearance of compartment 3 (L/min) 

𝐶𝑝(𝑡) 
The plasma concentration to the infusion 

rate 

𝐶𝑒(𝑡) 
The drug concentration in the effect site 

compartment 

 

 

compartment, X2(t) represents the peripheral fast 

compartment, such as muscles and the Viscera, X3(t) 

represents the slow dynamics compartment, such as 

fat or bones, and u(t) is the propofol infusion rate into 

the blood in (mg/min).  

The transfer rate of anesthesia concentration from 

different compartments is defined by the term “K,” 

and the unit is 1/min. The transfer of anesthesia from 

the first compartment to the second is denoted by K12. 

While from the second to the first, it is denoted by K21. 

Similarly, K31 and K13 follow the transfer of 

anesthesia concentration from the third to the first 

compartments and vice versa [10]. The relation 

between these parameters and the patient 

specifications, such as weight (kg), height (cm), lean 

body mass (lbm), gender (male or female), and age 

(in years), could be described as follows [12,13]. 

 

𝐾10 =
𝐶𝑙1

𝑉1
 

𝐾12 =
𝐶𝑙2

𝑉1

𝐾13 =
𝐶𝑙3

𝑉1

𝐾21 =
𝐶𝑙2

𝑉2

𝐾31 =
𝐶𝑙3

𝑉3 }
 
 
 
 

 
 
 
 

                                                (4) 

 

where, 

 
𝑉1 = 4.27

𝑉2 = 18.9 − 0.39(𝐴 − 53)
𝑉3 = 238

}                             (5) 

 

𝐶𝑙1 = 1.89 + 0.0456(𝑊 − 77) − 0.0681(𝑙𝑏𝑚 −
59) + 0.0264(𝐻 − 177)                                         (6) 

 

𝐶𝑙2 = 1.29 − 0.024(𝐴 − 53)                           (7) 

 

𝐶𝑙3 = 0.836                                                      (8) 

 

𝑙𝑏𝑚(𝑚𝑎𝑙𝑒) = 1.1𝑊 − 128
𝑊2

𝐻2
                        (9) 

 

𝑙𝑏𝑚(𝑓𝑒𝑚𝑎𝑙𝑒) = 1.07𝑊 − 148
𝑊2

𝐻2
               (10) 

 

The corresponding PK model can be expressed as 

𝐶𝑝(𝑡)  relating the plasma concentration to the 

infusion rate [6]. 

 

𝐶𝑝(𝑡) =
𝑋1(𝑡)

𝑉1
                (11) 

 

As given in Eq. (12) [7], 𝐶𝑒(𝑡) representing the drug 

concentration in the effect site compartment of the 

PD model might be computed using the plasma 

concentration derived from the PK model. 

 

𝐶̇𝑒(𝑡) = 𝐾𝑒0(𝐶𝑝(𝑡) − 𝐶𝑒(𝑡))                 (12) 

 

where 𝐾𝑒0 is the drug elimination rate from the effect 

site compartment and is the inclusion rate of drug 

metabolism. The BIS index value is obtained from 

the sigmoidal nonlinearity Hill equation via the effect 

s i t e  co mpar tmen t  𝐶𝑒(𝑡) ,  E C 5 0  i s  t he  d ru g 

concentration at the half maximal effect, and “g” is  
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Figure. 2 General surgery BIS index value [7,10] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure. 3 The proposed nonlinear RBF-NN-PID 

controller for the anesthesia system 

 

 

the nonlinearity degree of the function as follows [6-

8]: 

 

𝐵𝐼𝑆(𝑡) = 𝐵𝐼𝑆0(1 −
𝐶𝑒(𝑡)

𝑔

𝐸𝐶50
𝑔
+𝐶𝑒(𝑡)

𝑔
)                                  (13) 

 

or  

 

𝐵𝐼𝑆(𝑡) = 𝐸0 − 𝐸𝑚𝑎𝑥(
𝐶𝑒(𝑡)

𝑔

𝐸𝐶50
𝑔
+𝐶𝑒(𝑡)

𝑔)                         (14) 

 

where, BIS0 is the index value in an awake state, and 

it is equal to 100. 

E0 denotes the initial BIS value when 𝐶𝑒(𝑡)=0, while 

Emax is the maximum effective site concentration. 

The desired BIS index value in the surgical 

procedure band ranges from 40 to 60 as a scaling BIS 

signal. However, its nominal value is 50 based on the  

 
Figure. 4 The proposed nonlinear RBF-NN-PID 

controller structure  

 

 

Bi-spectral index for different hypnotic states, as 

shown in Fig. 2 [7,10]. 

3. Adaptive neural network like PID 

controller 

In this section, an adaptive radial basis function 

neural network like the PID controller is considered 

to control the depth of anesthesia via suitable drug 

infusion rate control action. Fig. 3 illustrates the 

control strategy of the anesthesia system and presents 

the suggested meta-heuristic technique, which is 

suitable for exploring and exploiting the global 

extreme solution to find and tune the gain control 

parameters of the neural network to function like a 

PID controller. 

3.1 Control strategy design 

The proposed structure of the nonlinear RBF-

NN-PID controller is shown in Fig. 4, based on 

Gaussian neural networks, which have been found to 

be powerful schemes for learning complex input-

output nonlinear mapping and have been used in the 

learning and control of nonlinear dynamic systems. 

The RBF neural network feedforward algorithm 

is calculated according to Eq. (15) [14], which 

describes the discrete PID controller as follows: 

 

𝑃𝐼𝐷(𝑘𝑇) = 𝑃𝐼𝐷(𝑘 − 1)𝑇 + 𝐾𝑝(𝐸(𝑘𝑇) −  𝐸(𝑘 −
1)𝑇) + 𝐾𝑖(𝐸(𝑘𝑇)) + 𝐾𝑑(𝐸(𝑘𝑇) − 2𝐸(𝑘 − 1)𝑇 +
𝐸(𝑘 − 2)𝑇)                                                           (15) 

 

where Kp, Ki, and Kd are the control gain parameters 

of the PID controller. Therefore, 

 

𝑂1(𝑘𝑇) = 𝐸(𝑘𝑇) −  𝐸(𝑘𝑇 − 𝑇))                             (16) 

 

𝑂2(𝑘𝑇) = 𝐸(𝑘𝑇)                                                     (17)  

 

𝑂3(𝑘𝑇) = 𝐸(𝑘𝑇) −  2𝐸(𝑘𝑇 − 𝑇) + 𝐸(𝑘𝑇 − 2𝑇)
                 (18) 
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The error signal between the desired BIS index value 

and the actual BIS level is the input for the RBF 

neural network. The sum of these signals is calculated 

as follows: 

 

𝑛𝑒𝑡(𝑘𝑇) = (𝐾𝑝𝑂1(𝑘𝑇) − 𝑐)
2 + (𝐾𝑖𝑂2(𝑘𝑇) − 𝑐)

2 +

(𝐾𝑑𝑂3(𝑘𝑇) − 𝑐)
2                                                   (19) 

 

where c is the center of the geometric shape of the 

Gaussian functions of neurons. 

The activation function output of the RBF-NN is 

as follows [15,16]: 

 

𝐻(𝑛𝑒𝑡(𝑘𝑇) = 𝑎𝑒
−(

𝑛𝑒𝑡(𝑘𝑇)

𝜎2
)
                             (20) 

 

where a and 𝜎 are the maximum amplitude and the 

width of the geometric shape of the Gaussian 

functions of neurons, respectively. 

The final value of the propofol drug control action 

of the hypnosis depth is given in Eq. (21): 

  

𝑢(𝑘𝑇) = 𝑢(𝑘 − 1)𝑇 + 𝐻(𝑛𝑒𝑡(𝑘𝑇))             (21) 

 

The control gain parameters of the nonlinear RBF-

NN-PID controller can be found and tuned by the off-

line (PSO, CPSO, and MCPSO) algorithms in order 

to obtain the optimal or near-optimal propofol 

infusion drug control action for the PK/PD model to 

keep the desired BIS index value in the surgical 

procedure band ranging from 40 to 60 as a scaling 

BIS signal to prevent hypotension and postoperative 

adverse reactions. However, its nominal value is 50 

based on the Bi-spectral index for a moderately 

hypnotic state. 

Three meta-heuristic techniques, including PSO, 

CPSO, and MCPSO algorithms, will be used in this 

work. Eq. (6) [17, 18] is used as the cost function to 

determine the mean square error of every solution in 

all optimization algorithms: 

 

𝑀𝑆𝐸 = ∑ [
1

𝐾
∑ ((𝐵𝐼𝑆𝑑𝑒𝑠𝑖𝑟𝑒𝑑(𝑖) −
𝐾
𝑖

𝐼𝑇𝑚𝑎𝑥
𝐼𝑡

𝐵𝐼𝑆𝑎𝑐𝑡𝑢𝑎𝑙(𝑖)) 
2)]                                                     (22) 

 

where, ITmax is the maximum number of iterations 

and K denotes the maximum number of samples. 

The PSO, CPSO, and MCPSO algorithms are 

used for swarming the control gain parameters (Kp, 

Ki, and Kd) toward the best correct solution found in 

the previous iterations. The aim is to effectively 

search the result space, eventually converge on the 

minimum BIS error solution, and discover better 

solutions along the way based on the nonlinear RBF-

NN-PID controller. 

3.2 Control parameters tuning algorithms 

The PSO algorithm belongs to the population-

based evolutionary algorithms, which draw 

inspiration from studies on swarms, including fish 

schools and bird flocks [19]. More specifically, the 

PSO process is started with a set of (Npop) randomly 

chosen particles {Kp, Ki, Kd}. As every particle in 

the group symbolizes a point that moves across a 

(Dim)-dimensional search space, the positions of the 

particles indicate multiple potential sets of unknown 

parameters that need to be idealized. The rate at 

which the particle’s location changes is determined 

by its velocity, while its fitness or quality measure is 

determined by its position inside the search space 

[14,20]. 

The vector (Kpidparticle𝑖) = [Kpidparticle,1, Kpidparticle,2, 

…, Kpidparticle,𝑖], where (i) is the particle’s index, 

while the vector (𝑉pidparticle,i,) = {Vpidparticle,1,  

Vpidparticle,2, …, Vpidparticle,𝑖}, which is limited within 

the range of 𝑉pid𝑚𝑎𝑥particle = {Vpid𝑚𝑎𝑥particle,1, 

Vpid𝑚𝑎𝑥particle,2, …, Vpid𝑚𝑎𝑥particle,i}, representing 

the velocity. 

The velocity is forced to its proper value if it is 

beyond certain limits. The ith particle can seek its 

local optimal place by altering its velocity in this 

manner. Based on its own flight expertise, each 

particle modifies its trajectory toward a particular 

place and disseminates collective knowledge among 

the particles. In addition, each particle has an iteration 

that varies its speed from one location to another, and 

it retains the best position it has found thus far in the 

vector Lpid_bestparticle,i = {Lpid_bestparticle,1, 

Lpid_bestparticle,2, …, Lpid_bestparticle,i}.  

The best global particle or solution up to this point is 

represented by the global best position, which is then 

kept in the vector Gpid_bestparticle = {Gpid_bestparticle,1, 

Gpid_bestparticle,2, …, Gpid_bestparticle,i} among all the 

best individual locations of particles.  

Each iteration modifies each particle’s location and 

velocity in accordance with Eqs. (23) and (24) [14], 

and the parameters’ definitions are shown in Table 2. 

 

𝑉𝑝𝑖𝑑𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒,𝑖
𝑘+1 = 𝑤 × 𝑉𝑝𝑖𝑑𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒,𝑖

𝑘 +

𝑐1𝑟(𝐿𝑝𝑖𝑑_𝑏𝑒𝑠𝑡𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒,𝑖
𝑘 − (𝐾𝑝𝑖𝑑)𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒,𝑖

𝑘 )

+𝑐2𝑟(𝐺𝑝𝑖𝑑_𝑏𝑒𝑠𝑡𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒
𝑘 − (𝐾𝑝𝑖𝑑)𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒,𝑖

𝑘 )

        (23) 

 

(𝐾𝑝𝑖𝑑)𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒,𝑖
𝑘+1 = (𝐾𝑝𝑖𝑑)𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒,𝑖

𝑘 + 𝑉𝑝𝑖𝑑𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒,𝑖
𝑘+1        

(24) 

 

According to the description in [21], the basic steps 

of the CPSO algorithm involve finding and fine-

tuning the parameters of the nonlinear RBF-NN-PID 

controller and incorporating the chaos method into  
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Table 2. Definition of the PSO parameters 

Symbols Definition 

W Inertia weight 0.731 

Vpidparticle,i, k Particle speed at iteration k 

c1 ,c2 Acceleration constants 

(1.39,1.39) 

r1,r2 Random values between (0,1) 

(𝐾𝑝𝑖𝑑)𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒,𝑖
𝑘  

At kth iteration, the ith (Kp, Ki, 

Kd) particle  

𝐿𝑝𝑖𝑑_𝑏𝑒𝑠𝑡𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒,𝑖 
The best ith (Kp, Ki, Kd) 

particle in local fitness.  

Gpid_bestparticle 
The best (Kp, Ki, Kd) particle 

in global fitness  

 

 
Table 3. Definitions of the CPSO parameters 

Parameter Definition with value 

𝛽1 0.3 deterministic value 

µ 4 constant value 

W 0.831 inertia weight   

𝑊𝑚𝑖𝑛 0.25 minimum weight   

𝑊𝑚𝑎𝑥 0.95 maximum weight  

𝐼𝑇 Current iteration number 

𝐼𝑇𝑚𝑎𝑥 
The maximum iterations 

number 

𝑐1, 𝑐2 
Coefficients of parameter 

acceleration [1.39, 1.39] 

Vpidparticle,i,k 
At kth iteration, the ith (Kp, Ki, 

Kd) particle velocity 

(𝐾𝑝𝑖𝑑)𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒,𝑖
𝑘  

At kth iteration, the ith (Kp, Ki, 

Kd) particle  

𝐿𝑝𝑖𝑑_𝑏𝑒𝑠𝑡𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒,𝑖 
The best ith (Kp, Ki, Kd) 

particle in local fitness.  

Gpid_bestparticle 
The best (Kp, Ki, Kd) particle 

in global fitness  

 

 

the PSO algorithm to increase the randomness in the 

PSO algorithm’s search to solve the local minima 

problem. 

 

𝛽𝑘+1 = µ × 𝛽𝑘(1 − 𝛽𝑘)         0 < 𝛽1 < 1          (25) 

 

𝑊 = 𝑊𝑚𝑎𝑥 − [(𝑊𝑚𝑎𝑥 − 𝑊𝑚𝑖𝑛) × (
𝐼𝑇

𝐼𝑇𝑚𝑎𝑥
)]          (26) 

 

𝑊𝑛𝑒𝑤 = 𝑊 × 𝛽𝑘+1                                                         (27) 

 

As a result, the particle updates its equations for 

position and velocity, which are as follows [21]: 

 

𝑉𝑝𝑖𝑑𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒,𝑖
𝑘+1 = 𝑊𝑛𝑒𝑤,𝑘 × 𝑉𝑝𝑖𝑑𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒,𝑖

𝑘 +

𝑐1𝑟(𝐿𝑝𝑖𝑑_𝑏𝑒𝑠𝑡𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒,𝑖
𝑘 − (𝐾𝑝𝑖𝑑)𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒,𝑖

𝑘 )

+𝑐2𝑟(𝐺𝑝𝑖𝑑_𝑏𝑒𝑠𝑡𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒
𝑘 − (𝐾𝑝𝑖𝑑)𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒,𝑖

𝑘 )

        (28) 

 

Table 4. Definitions of the MCPSO parameters 

Parameter Definition with value 

𝛽1 0.3 deterministic value  

µ 4 constant value  

W 0.831 inertia weight  

𝑊𝑚𝑖𝑛 0.25 minimum weight 

𝑊𝑚𝑎𝑥 0.95 maximum weight  

𝐼𝑇 Current iteration number 

𝐼𝑇𝑚𝑎𝑥 
The maximum iterations 

number 

𝑐1−𝑚𝑖𝑛 0.1 minimum weight for c1 

𝑐1−𝑚𝑎𝑥 1.9 maximum weight for c1 

𝑐2−𝑚𝑖𝑛 0.1 minimum weight for c2 

𝑐2−𝑚𝑎𝑥 1.9 maximum weight for c2 

Vpidparticle,i, k 
At kth iteration, the ith (Kp, Ki, 

Kd) particle velocity 

(𝐾𝑝𝑖𝑑)𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒,𝑖
𝑘  

At kth iteration, the ith (Kp, Ki, 

Kd) particle  

𝐿𝑝𝑖𝑑_𝑏𝑒𝑠𝑡𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒,𝑖 
The best ith (Kp, Ki, Kd) 

particle in local fitness.  

Gpid_bestparticle 
The best (Kp, Ki, Kd) particle 

in global fitness  

 

(𝐾𝑝𝑖𝑑)𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒,𝑖
𝑘+1 = (𝐾𝑝𝑖𝑑)𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒,𝑖

𝑘 + 𝑉𝑝𝑖𝑑𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒,𝑖
𝑘+1        

(29) 

 

Table 3 illustrates the CPSO parameters’ definitions 

that are used in the numerical simulation. The 

fundamental proposed procedures of the MCPSO 

algorithm use the chaos method in each of c1 and c2 

acceleration coefficients and remove the two random 

parameters (r1 and r2) from the velocity update 

equation in order to generate more chaotic 

randomness in the search that depends on 𝑐1−𝑛𝑒𝑤and  

𝑐2−𝑛𝑒𝑤 for the proposed MCPSO algorithm and to 

quickly solve the local minima problem, as follows: 

 

𝑐1 = 𝑐1−𝑚𝑎𝑥 − [(𝑐1−𝑚𝑎𝑥 − 𝑐1−𝑚𝑖𝑛) × (
𝐼𝑇

𝐼𝑇𝑚𝑎𝑥
)] (30) 

 

𝑐1−𝑛𝑒𝑤 = 𝑐1 × 𝛽
𝑘+1                                                         (31) 

 

𝑐2 = 𝑐2−𝑚𝑎𝑥 − [(𝑐2−𝑚𝑎𝑥 − 𝑐2−𝑚𝑖𝑛) × (
𝐼𝑇

𝐼𝑇𝑚𝑎𝑥
)] (32) 

 

𝑐2−𝑛𝑒𝑤 = 𝑐2 × 𝛽
𝑘+1                                                         (33) 

 

As a result, the suggested particle modifies its 

location and velocity equations, which are as follows: 

 

𝑉𝑝𝑖𝑑𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒,𝑖
𝑘+1 = 𝑊𝑛𝑒𝑤

𝑘 × 𝑉𝑝𝑖𝑑𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒,𝑖
𝑘 +

𝑐1−𝑛𝑒𝑤
𝑘 (𝐿𝑝𝑖𝑑_𝑏𝑒𝑠𝑡𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒,𝑖

𝑘 − (𝐾𝑝𝑖𝑑)𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒,𝑖
𝑘 )

+𝑐2−𝑛𝑒𝑤
𝑘 (𝐺𝑝𝑖𝑑_𝑏𝑒𝑠𝑡𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒

𝑘 − (𝐾𝑝𝑖𝑑)𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒,𝑖
𝑘 )

(34) 
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(𝐾𝑝𝑖𝑑)𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒,𝑖
𝑘+1 = (𝐾𝑝𝑖𝑑)𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒,𝑖

𝑘 + 𝑉𝑝𝑖𝑑𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒,𝑖
𝑘+1            

(35) 

 

The definitions of the MCPSO parameters utilized in 

the numerical simulation are shown in Table 4. 

4. Simulation results 

We implemented the proposed off-line nonlinear 

RBF-NN-PID controller with three meta-heuristics 

(PSO, CPSO, and MCPSO) for the PK/PD model 

using the numerical fourth-order Runge-Kutta (4RK) 

method based on the MATLAB package with a 0.1 

minutes sampling time. This controller improved and 

controlled the depth of the hypnosis state and the drug 

infusion rate (propofol) during surgery operations 

and improved the time to reach the moderate hypnotic 

state at BIS of 50, preventing patients from being 

under- or overdosed, which could cause hypotension 

and postoperative adverse reactions. The first dataset 

includes four different patients with the physical 

specifications of (gender, age, height, weight, EC50, 

and g), as given in Table 5 [8]. Then, the parameters 

of the PK/PD model, as shown in Table 6, are based 

on the Eqs. (4)-(10), where Ke0 is a constant value 

(0.456 (1/min)). In this regard, the proposed offline 

nonlinear RBF-NN-PID controller settings for the 

search space areas are displayed for each patient in 

Table 7, which is suitable for exploring and 

exploiting the global extreme solution to find and 

tune the gain control parameters of the proposed 

controller. Therefore, we examined the efficacy and 

performance of the proposed controller using the off-

line method for tuning the parameters based on PSO, 

CPSO, and MCPSO algorithms with a population 

size that equals 50 particles and a maximum number 

of iterations that equals 50. Moreover, the definitions 

of the parameters for the tuning algorithms in Tables 

2, 3, and 4 are adopted. The response of the suggested 

closed-loop infusion drug propofol nonlinear RBF-

NN-PID controller for patient #1 at the desired BIS 

that equals 50 is shown in Fig. 5. From Fig. 5, the fast 

response of BIS reaches the desired BIS of 50 after 

ten samples, which means 1 minute, and the patient 

will enter the moderate hypnotic state at time 0.1 

minute when using the proposed MCPSO tuning 

algorithm for the RBF-NN-PID controller to generate 

the optimal propofol drug control action. When using 

the CPSO tuning algorithm for the RBF-NN-PID 

controller, the response of BIS is fast and reaches 50 

after fifteen samples, which means 1.5 minutes, and 

the patient will enter the moderate hypnotic state at 

time 0.3 minutes. When using only the PSO tuning 

algorithm, the response reached the desired BIS at 3 

minutes after thirty samples, and the patient will enter  

Table 5. The definitions of physical specifications [8]  

Patient Gander A H W EC50 g 

#1 F 40 163 54 6.33 2.24 

#2 F 50 163 83 6.44 2.18 

#3 M 28 164 60 4.93 2.46 

#4 M 42 179 78 4.82 1.85 

 

 
Table 6. The parameters of the PK/PD model 

Patient K10 K12 K13 K21 K31 

#1 0.389 0.375 0.195 0.0668 0.0035 

#2 0.556 0.319 0.195 0.0679 0.0035 

#3 0.342 0.442 0.195 0.0659 0.0035 

#4 0.425 0.363 0.195 0.0670 0.0035 

 

 
Table 7. The suggested search space regions of the 

control parameters for each patient 
Kp Ki Kd 

-1.5 to +1.5 -2 to +2 -1 to +1 

 

 

 
Figure. 5 The BIS response for patient #1 of the closed-

loop RBF-NN-PID controller 
 

 
Table 8. The optimal parameters’ values for the three 

algorithms 

Algorithms Kp Ki Kd 

PSO -0.437 -0.241 -0.881 

CPSO -0.543 -0.235 -0.766 

MCPSO -0.521 -0.225 -0.757 

 

 

the moderate hypnotic state at time 0.4 minutes. The 

best values of the RBF-NN-PID control parameters  
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Figure. 6 The propofol drug rate response 

 

 
Figure. 7 The response of the cost function (MSE) for all 

methods 
 

for patient #1 by employing PSO, CPSO, and the 

proposed MCPSO algorithms are displayed in Table 

8. Fig. 6 shows the output response of the propofol 

drug action of the RBF-NN-PID controller when the 

desired BIS value suddenly decreases from 100 to 

50 in a moderately hypnotic state. The proposed 

controller quickly and optimally calculates the 

propofol drug action value to control the depth of the 

hypnosis state. Based on Eq. (22), the response of the 

cost function (MSE), which is used in the three tuning 

algorithms, during 50 iterations is shown in Fig. 7. 

In particular, the proposed MCPSO algorithm 

reaches the minimum value of MSE at 5 iterations, 

the CPSO algorithm reaches it at 10 iterations, and 

the PSO algorithm reaches it at 25 iterations. 

Specifically, the chaos method is applied in the 

proposed MCPSO algorithm in the three parts of Eq. 

(34) in parameters (𝑊𝑛𝑒𝑤 , 𝑐1−𝑛𝑒𝑤 , and 𝑐2−𝑛𝑒𝑤 ) in 

order to increase the stochastic randomness in the 

search for the MCPSO algorithm and to solve the 

 

 
Figure. 8 The response of the plasma concentration in the 

PK model 
 

 
Figure. 9 The response of the concentration of the drug in 

the effect site compartment 
 

local minima problem as fast as possible. On the other 

hand, the CPSO algorithm uses only one chaos 

parameter (𝑊𝑛𝑒𝑤). In the PSO algorithm, the chaos 

method was not applied. Fig. 8 shows the response of 

the plasma concentration in the PK model for the core 

compartments of the liver, brain, and blood. 

Moreover, the viscera and muscles are fast-moving, 

well-perfused bodily tissues, while the bone and fat 

have a slow dynamic because they are bodily 

components with limited blood flow. Fig. 9 shows the 

concentration of the drug in the effect site 

compartment 𝐶𝑒(𝑡)  in the PD model that was 

obtained from the plasma concentration in the PK 

model. The outcomes of evaluating the proposed 

RBF-NN-PID controller using the proposed MCPSO 

algorithm for patient #1 in different surgery BIS 

index values, including the light hypnotic state of 70, 

the moderate hypnotic state of 50, and the start deep 

hypnotic state of 25 in terms of fast response,  
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Figure. 10 The surgery BIS response for different states 

 

 

 
Figure. 11 The propofol drug rate response for different 

states of BIS surgery 
 

 

accurately maintaining a triad of hypnosis, and 

optimally generating the propofol drug action are 

shown in Figs. 10 and 11, respectively. Fig. 12 shows 

the performance of the proposed controller using the 

off-line method for tuning the parameters based on 

MCPSO algorithms and using the parameters’ 

definition in Tables 4, 5, and 6 for four patients [8] at 

a desired BIS that equals 50. From Fig. 12, the fast 

response of BIS reaches the desired BIS of 50 in 1 

minute, and all patients will enter the moderate 

hypnotic state at 0.1 minutes. The second dataset 

includes four different patients with physical 

specifications of (gender, age, height, weight, EC50, 

and g), as given in Table 9, [7]. Then, the parameters 

of the PK/PD model are shown in Table 10, and they 

are based on the Eqs. (4)-(10), where Ke0 is a  

 
Figure. 12 The BIS response for four patients [8] of the 

closed-loop RBF-NN-PID controller 
 

 
Table 9. The definitions of physical specifications [7]  

Patient Gander A H W EC50 g 

#1 F 36 163 50 6.76 4.29 

#2 F 28 164 52 8.44 4.1 

#3 M 37 187 75 8.02 2.1 

#4 M 42 179 78 4.82 1.85 

 

 
Table 10. The parameters of the PK/PD model 

Patient K10 K12 K13 K21 K31 

#1 0.377 0.397 0.195 0.0665 0.0035 

#2 0.386 0.442 0.195 0.0659 0.0035 

#3 0.342 0.442 0.195 0.0659 0.0035 

#4 0.425 0.363 0.195 0.0670 0.0035 

 

 

constant value (0.456 (1/min)). Fig. 13 shows the 

performance of the proposed controller for another 

dataset [7] of four patients at a desired BIS that equals 

50. From Fig. 13, the fast response of BIS reaches the 

desired BIS of 50 in 1 minute, and patients #1, #2, 

and #4 will enter the moderate hypnotic state at time 

0.1 minutes, while patient #3 will enter the moderate 

hypnotic state at time 0.25 minutes. To validate the 

effectiveness of the proposed optimization 

algorithms (MCPSO) for tuning the parameters of the 

RBF-NN-PID controller in terms of reaching the 

moderate hypnotic state at a minimum time and for 

displaying the time enhancement percentage, Eq. 

(36) is used. 

 

𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑚𝑒𝑛𝑡 𝑇𝑖𝑚𝑒 (%) = 100 (1 −
𝑇𝑖𝑚𝑒 𝑓𝑜𝑟 𝐸𝑠𝑠 𝑡𝑜 𝑟𝑒𝑎𝑐ℎ  𝑧𝑒𝑟𝑜 𝑏𝑦 𝑡ℎ𝑒 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑚𝑒𝑡ℎ𝑜𝑑

𝑇𝑖𝑚𝑒 𝑓𝑜𝑟 𝐸𝑠𝑠 𝑡𝑜 𝑟𝑒𝑎𝑐ℎ  𝑧𝑒𝑟𝑜 𝑏𝑦 𝑜𝑡ℎ𝑒𝑟 𝑚𝑒𝑡ℎ𝑜𝑑 
)(36) 

 

Table 11 shows the comparison of the simulation  
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Figure. 13 The BIS response for four patients [7] of the 

closed-loop RBF-NN-PID controller 
 

 
Table 11. Comparing the simulation results with other 

controller's designs. 

Type of 

control 

algorithm 

Tuning 

algorithm 

Steady- 

State 

Error 

and time 

to reach 
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moderate 
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state  
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in the time to 
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moderate 
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state (%) 
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order 

controller 
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Adaptive 

high gain  

Ess=0 

T=2 min 

50% when 
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Adaptive 

Neuro-

Fuzzy 

controller 

[7] 

Trial and 

error 
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T=3 min 

67% when 

using MCPSO 

 

The 
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RBF-NN-

PID 

PSO Ess=0, T=3 min 
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The 
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results for the suggested nonlinear RBF-NN-PID 

controller utilizing the tuning algorithms (PSO, 

CPSO, and the proposed MCPSO) and the results of 

other types of controllers that are taken from the 

dataset from [7, 8], as given in Tables 5 and 9. 

The fractional order controller in [8] was built for 

the linear PK/PD model, and it uses the adaptive high 

control gain for all patients starting from 1000 using 

the trial-and-error method to obtain the control law 

gain. Therefore, the controller generates a fast but 

non-optimal value of the propofol control action, 

which leads to an actual BIS value at a steady-state 

error of zero at 2 minutes to reach the moderate 

hypnotic state at a 50 BIS value. In contrast, the 

proposed nonlinear RBF-NN-PID controller uses the 

proposed heuristic method (MCPSO) with the PK/PD 

model, and the controller has generated optimal or 

near-optimal propofol control action based on the 

best parameters obtained by the proposed MCPSO 

optimization algorithms, which leads to reaching the 

moderate hypnotic state level of 50 BIS in 1 minute 

without error in the steady state and with no 

oscillation. By using Eq. (36), the comparison results 

showed that the nonlinear RBF-NN-PID enhanced 

the time to 1 minute to reach the moderate hypnotic 

state by 50% when compared to the fractional order 

controller [8] that reached the moderate hypnotic 

state in 2 minutes, taking into account the same 

dataset and the same operation conditions. The 

adaptive neuro-fuzzy controller in [7] was designed 

for the linear PK/PD patient model. It uses three 

membership values and two variable gains with the 

trial-and-error method to obtain the two control gains 

in the control law. As a result, the controller generates 

a quick and suboptimal value of the propofol control 

action, which causes a slight oscillation in the BIS 

index value at 3 minutes without error in the steady-

state response. On the other hand, the proposed 

nonlinear RBF-NN-PID controller using the 

proposed heuristic method (MCPSO) with the PK/PD 

model has generated optimal or near-optimal 

propofol control action based on the best parameters 

obtained by the proposed MCPSO optimization 

algorithms, which leads to reaching the moderate 

hypnotic state level of 50 BIS in 1 minute without 

error in the steady-state and with no oscillation. By 

using Eq. (36), the comparison results showed that 

the nonlinear RBF-NN-PID enhanced the time to 1 

minute to reach the moderate hypnotic state by 67% 

when compared to the adaptive neuro-fuzzy 

controller [7], which reached the moderate hypnotic 

state in 3 minutes, considering the same dataset and 

the same operation conditions.  

In summary, the simulation results demonstrate 

that the suggested nonlinear RBF-NN-PID controller 

with the proposed MCPSO algorithm can generate 

the best propofol infusion rate control action, which 

allows the linear PK/PD patient model to track the 

required depth of anesthesia with the least amount of 

tracking error and minimum time to reach the 

moderate hypnotic state, achieving the optimal 

performance in various patients’ datasets. 

5. Conclusions 

The main scientific contribution of this work is to 

find and tune the optimal or near-optimal control gain 
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parameters of the nonlinear RBF-NN-PID controller 

using the proposed MCPSO algorithm based on the 

chaos method. Specifically, this method uses the 

coefficients of acceleration and removes the two 

random parameters from the velocity update equation 

in order to generate more chaotic randomness in the 

search space in order to quickly solve the local 

minima problem, leading to obtaining the fast and 

optimal value of the rate of anesthetic drug control 

action that will be injected into the patient-based 

PK/PD model. This process is done to quickly track 

and stabilize the patient’s depth of anesthesia and 

keep it at a surgery BIS index value within a suitable 

time to avoid under- or over-dosing of the drug for 

the patient that leads to hypotension and 

postoperative adverse reactions during surgical 

operations or after them. 

Consequently, the MCPSO method was suggested 

using the auto-tuned control strategy of the proposed 

RBF-NN-PID controller, and it works incredibly well 

to solve the following issues: 

• At the target BIS value of 50, the depth of 

anesthesia is superbly monitored and sustained 

at a typical moderate hypnotic state of (60-40) 

without oscillation in the steady state. 

• In order to increase the stochastic randomness in 

the search for the proposed algorithm and to 

solve the local minima problem, the chaos 

method was applied in the three parts of Eq. (34) 

in parameters (𝑊𝑛𝑒𝑤 , 𝑐1−𝑛𝑒𝑤 , and 𝑐2−𝑛𝑒𝑤 ),  

resulting in the suggested MCPSO algorithm, 

which has the offline tuning control parameters 

of kp, ki, and kd. 

• The propofol-infusion rate control action was 

optimized to improve the surgery BIS index 

response with high tracking precision of the 

measured output without a spike or saturation 

condition. 

• The minimum tracking error for the surgical BIS 

index is equal to zero. 

• The comparison results showed that the 

proposed RBF-NN-PID controller enhanced the 

time in one minute to reach the depth of 

anesthesia at the moderate hypnotic state when 

compared to the fractional-order adaptive high-

gain controller, in which the time to reach the 

depth of anesthesia is two minutes. In contrast, 

the adaptive neuro-fuzzy controller reached the 

depth of anesthesia in three minutes. Therefore, 

the time was improved by 50% and 67%, 

respectively. 
In order to manufacture anesthesia systems, the 

experimental work of the proposed RBF-NN-PID 

controller with the proposed MCPSO optimization 

algorithm will be implemented in the future in an 

embedded system based on an FPGA development 

board or an Arduino card with a propofol infusion 

drug pump device. 
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